Having trouble understanding something obvious.
Let $\varphi :S\to S'$ be a surjective homomorphism of finite semigroups. Then for every $\mathcal{J}$-class $J\subset S$ there exists a $\mathcal{J}$-class $J'\subset S'$ s.t $\varphi (J)\subset J'$. Also, for every $J'\subset S'$, there exists $J\subset S$ s.t $\varphi (J)\subset J'$.
A part of Lemma 1.4, p.144 "Semigroups: An introduction to structure theory", P.A Grillet.
The proof asserts that this is clear [which it isn't].
Hint. First prove that if $x \leqslant_{\cal J} y$, then $\varphi(x) \leqslant_{\cal J} \varphi(y)$. Deduce that if $x \mathrel{\cal J} y$, then $\varphi(x) \mathrel{\cal J} \varphi(y)$.