Let $T:M^{F}_{n \times n} \to M^{F}_{n \times n} $ be a linear transformation defined by $T(X)=AX$, where $F$ is a field.
The matrix $A$ and the transformation $T$ have the same minimal polynomial. Find the Jordan Normal Form of $T$ when $A=\left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right)$ and $F=R$.
Here is my question:
The minimal polynomial of A is $(t-1)^2$. So is $T$'s.
According to the answer I have, the characteristic polynomial of $T$ is $(t-1)^4$ - Why?
A is a $2 \times 2$ matrix. How can it create a $4x4$ Jordan Normal Form (since the characteristic polynomial has a degree of $4$)?
My question is why the characteristic polynomial of T is $(t-1)^4$?
Thanks,
Alan
Hint:
$$ T(X)= \begin{bmatrix} 1&1\\ 0&1 \end{bmatrix} \begin{bmatrix} x&y\\ z&t \end{bmatrix}= \begin{bmatrix} x+z&y+t\\ z&t \end{bmatrix}= (x+z)\begin{bmatrix} 1&0\\ 0&0 \end{bmatrix}+(y+t)\begin{bmatrix} 0&1\\ 0&0 \end{bmatrix} +z\begin{bmatrix} 0&0\\ 1&0 \end{bmatrix} +t\begin{bmatrix} 0&0\\ 0&1 \end{bmatrix} $$ So, the transformation $T$ is represented, in the canonical basis of $M_2(\mathbb{R})$, by the matrix: $$ T= \begin{bmatrix} 1&0&1&0\\ 0&1&0&1\\ 0&0&1&0\\ 0&0&0&1 \end{bmatrix} $$ tha has characteristic polynomial $(\lambda-1)^4$
In the canonical basis we have: $$ X=x\begin{bmatrix} 1&0\\ 0&0 \end{bmatrix} +y\begin{bmatrix} 0&1\\ 0&0 \end{bmatrix} +z\begin{bmatrix} 0&0\\ 1&0 \end{bmatrix} +t\begin{bmatrix} 0&0\\ 0&1 \end{bmatrix}= \begin{bmatrix} x\\y\\z\\t \end{bmatrix} $$ $$ T(X)=(x+z)\begin{bmatrix} 1&0\\ 0&0 \end{bmatrix}+(y+t)\begin{bmatrix} 0&1\\ 0&0 \end{bmatrix} +z\begin{bmatrix} 0&0\\ 1&0 \end{bmatrix} +t\begin{bmatrix} 0&0\\ 0&1 \end{bmatrix}= \begin{bmatrix} x+z\\y+t\\z\\t \end{bmatrix} $$ so the transformation acts as: $$ T\left(\begin{bmatrix} x\\y\\z\\t \end{bmatrix} \right)=\begin{bmatrix} x+z\\y+t\\z\\t \end{bmatrix} $$