Let $X$ and $Y$ be independent and identically distributed random variables with moment generating function $M(t)=E(e^{tX});\ \ -\infty<t<\infty$ then $E(\dfrac{e^{tX}}{e^{tY}})$ equals ?
$(A)=M(t)M(-t)$
$(B)=1$
$(C)=(M(t))^2$
$(D)=\frac{M(t)}{M(-t)}$
My input: Since its given that random variables are i.i.d so $E(\dfrac{\require{\cancel}\cancel{e^{tX}}}{\cancel{e^{tY}}})=E(1)=1 $
can I do that?
$X,Y$ are independent of each other, so $e^{tX}$ and $e^{tY}$ are independent of each other. This gives $M(t) = E[e^{tX}] = E[e^{tY}]$
Moreover, $M(t) = E[e^{tX}]$ and $M(-t) = E[e^{-tY}]$ are independent of each other, this gives $$E\left[\frac{e^{tX}}{e^{tY}}\right] = E[e^{tX} \cdot e^{-tY}] = E[e^{tX}] \cdot E[e^{-tY}] = M(t) M(-t). $$