Let $R$ be a PID. Let $S$ be a multiplicative closed subset of $R$ and let $\bar S$ be its saturation. Then $S^{-1}R=\bar S^{-1} R= A$ (let) . Suppose $A$ is a Valuation ring, then it is also a DVR since it is PID. My question is : If $A=S^{-1}R$ is a DVR then how to show that $A=R_P$ for some prime ideal $P$ of $R$ ?
2026-02-22 19:52:04.1771789924
Localization of PID, if DVR, is a localization at a prime ideal
487 Views Asked by user495643 https://math.techqa.club/user/user495643/detail At
1
There are 1 best solutions below
Related Questions in RING-THEORY
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- A commutative ring is prime if and only if it is a domain.
- Find gcd and invertible elements of a ring.
- Prove that $R[x]$ is an integral domain if and only if $R$ is an integral domain.
- Prove that $Z[i]/(5)$ is not a field. Check proof?
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- Let $R$ be a simple ring having a minimal left ideal $L$. Then every simple $R$-module is isomorphic to $L$.
- A quotient of a polynomial ring
- Does a ring isomorphism between two $F$-algebras must be a $F$-linear transformation
- Prove that a ring of fractions is a local ring
Related Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in PRINCIPAL-IDEAL-DOMAINS
- Principal Ideal Ring which is not Integral
- A variation of the argument to prove that $\{m/n:n \text{ is odd },n,m \in \mathbb{Z}\}$ is a PID
- Why is this element irreducible?
- Quotient of normal ring by principal ideal
- $R/(a) \oplus R/(b) \cong R/\gcd(a,b) \oplus R/\operatorname{lcm}(a,b) $
- Proving a prime ideal is maximal in a PID
- Localization of PID, if DVR, is a localization at a prime ideal
- Structure theorem for modules implies Smith Normal Form
- Let R be a PID, B a torsion R module and p a prime in R. Prove that if $pb=0$ for some non zero b in B, then $\text{Ann}(B)$ is a subset of (p)
- Why can't a finitely generated module over a PID be generated by fewer elements than the number of invariant factors?
Related Questions in LOCALIZATION
- Example of simple modules
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- Hilbert polynomial and dimension of $M \otimes K(x_1,\dots,x_n)$
- Is $K[X]/(X^2)$ local if $K$ is a field?
- Prove statement about localization of modules
- Localization of a non-zero module is non-zero?
- A relation between prime ideals and ring of fraction.
- Exercise on conditions for a ring to be normal
- Spectrum of $\mathbb{Z}[\frac{1}{6}]$
- Determine kernel of localization map of ring
Related Questions in KRULL-DIMENSION
- Krull dimension of a direct product of rings
- Dimension of Quotient of Noetherian local ring
- Motivation behind the Krull Dimension of a ring
- ring satisfying a.c.c. on radical ideals, with nilpotent nilradical and every prime ideal maximal
- Why does a zero-dimensional irreducible space have no non-trivial open subsets?
- torsion-free modules $M$ over Noetherian domain of dimension $1$ for which $l(M/aM) \le (\dim_K K \otimes_R M) \cdot l(R/aR), \forall 0 \ne a \in R$
- Localization of PID, if DVR, is a localization at a prime ideal
- How to prove that $\dim \mathrm{Spec}~A = \dim \mathrm{Spec}~ A_\mathfrak{p} + \dim \mathrm{Spec}~A/\mathfrak{p}$.
- Proof of Krull's Height Theorem for irreducible affine varieties
- Dimension of certain type of finitely generated $k$-algebra
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
We don't really need that $R$ is a PID here, so let $R$ be any integral domain such that $S^{-1}R$ is a DVR for some multiplicatively closed subset $S$.
The prime ideals in a localization $S^{-1}R$ correspond to the prime ideals in $R$ that have empty intersection with $S$. In this case, as we know that $S^{-1}R$ has only two prime ideals, we know that $S$ has the property that there are exactly two prime ideals that have empty intersection with $S$.
As $(0)$ is a prime ideal that is contained in every other prime ideal, one of these two prime ideals must be $(0)$, let the other prime ideal be $P$. Note that since if $Q \subset P$ is any other prime ideal, then $Q$ will also have empty intersection with $S$, thus $Q=(0)$ or $Q=P$, so the height of $P$ must be $1$.
I claim that the saturation $\bar{S}$ is $R \setminus P$. Indeed, we must have $\bar{S} \subset R \setminus P$, because if $xy \in S$, then $xy \notin P$, so $x,y \notin P$ because $P$ is prime.
We know that $\bar{S}$ must be the complement of a union of prime ideals $\bar{S}= R \setminus (\cup_{i \in I} P_i)$, but any of the $P_i$ will have empty intersection with $\bar{S}$ (or equivalently with $S$), so they must be equal to $(0)$ or $P$, but then $\cup_{i \in I} P_i = P$, so $\bar{S} = R \setminus P$.
Thus $S^{-1}R= R_P$.
To summarize, what has been shown is that if for an integral domain $R$, some localization $S^{-1}R$ is a DVR, then $S^{-1}R=R_P$ for some height one prime ideal $P$.