Given the derivative operator in image processing
$$ A = \begin{bmatrix} 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & \ldots & 0 \\ & & & \vdots & & & & \end{bmatrix} $$
The Laplacian (Discrete Laplace Operator) would be given by
$$ A {A}^{T} $$
I read its maximum eigenvalue is bounded by $ 4 $.
How can it be shown?
The form of $ A {A}^{T} $ is given by
$$ B = A {A}^{T} = \begin{bmatrix} 2 & -1 & 0 & \ldots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 \\ & & & \vdots & & & \end{bmatrix} $$
Using Gershgorin Disc Theorem the discs are given by $ {R}_{ii} = \sum_{j \neq = i} \left| {b}_{ij} \right| \leq 2 $ and $ {b}_{ii} = 2 $ hence $ \forall i \; {\lambda}_{i} \leq 4 $