Consider $A \in M_n(\mathbb R)$ defined by:
$$A=\begin{bmatrix} a & -1 & 0 & \cdots & 0 \\ -1 & a & -1 &\cdots& 0\\ 0 & -1 & a & \cdots & 0\\ \vdots & \vdots & \vdots &\ddots & -1\\ 0 & 0 & 0 & -1 & a \end{bmatrix}$$
How to find the eigenvalues of $A$?
I know:
$$P_A(\lambda) = \left| \begin{array}{ccc} \lambda - a & 1 & 0 & \cdots & 0 \\ 1 & \lambda - a & 1 &\cdots& 0\\ 0 & 1 & \lambda - a & \cdots & 0\\ \vdots & \vdots & \vdots &\ddots & 1\\ 0 & 0 & 0 & 1 & \lambda - a \end{array} \right|$$
or more simply
$$P_A(a + \lambda) = \left| \begin{array}{ccc} \lambda & 1 & 0 & \cdots & 0 \\ 1 & \lambda & 1 &\cdots& 0\\ 0 & 1 & \lambda & \cdots & 0\\ \vdots & \vdots & \vdots &\ddots & 1\\ 0 & 0 & 0 & 1 & \lambda \end{array} \right|$$
What to do next?
Hint:
Determinants of tridiagonal matrices can be calculated with a linear recurrence of order $2$. In the present case, denoting $D_n$ this determinant of order $n$, we have: \begin{align*} D_n&=\lambda D_{n-1}- D_{n-2}\\ \text{with initials conditions:}\quad D_0&=1,\enspace D_1=\lambda \end{align*} The solutions are linear combinations of geometric sequences $r^n$, $r$ satisfying the characteristic equation: $$r^2=\lambda r-1.$$