I knew 2 functions that bijectively transform $(0,\infty)$ into $(-\infty,\infty)$, which are $\log x$ and $\log\log(x+1)$. Do you guys know another function like (as simple as possible) but does not involve $\log$? Thank you so much
2026-02-22 19:47:35.1771789655
Non-logarithmic bijective function from $\mathbb{R}^+$ into $\mathbb{R}$
63 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in ANALYSIS
- Analytical solution of a nonlinear ordinary differential equation
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Show that $d:\mathbb{C}\times\mathbb{C}\rightarrow[0,\infty[$ is a metric on $\mathbb{C}$.
- conformal mapping and rational function
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Elementary question on continuity and locally square integrability of a function
- Proving smoothness for a sequence of functions.
- How to prove that $E_P(\frac{dQ}{dP}|\mathcal{G})$ is not equal to $0$
- Integral of ratio of polynomial
Related Questions in FUNCTIONS
- Functions - confusion regarding properties, as per example in wiki
- Composition of functions - properties
- Finding Range from Domain
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Lower bound of bounded functions.
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
Related Questions in TRANSFORMATION
- Functions on $\mathbb{R}^n$ commuting with orthogonal transformations
- How do you prove that an image preserving barycentric coordinates w.r.t two triangles is an affine transformation?
- Non-logarithmic bijective function from $\mathbb{R}^+$ into $\mathbb{R}$
- Where does this "magical" transformatiom come from?
- Calculate the convolution: $\frac{\sin(4t)}{\pi t}*( \cos(t)+\cos(6t) )$ using Fourier transform
- Find all $x \in\mathbb R^4$ that are mapped into the zero vector by the transformation $x \mapsto Ax$
- Linear transformation $f (ax+by)=$?
- Is a conformal transformation also a general coordinate transformation?
- Infinite dimensional analysis
- Circle inversion and the Pappus chain paradox
Related Questions in FRACTIONS
- Can we find integers $x$ and $y$ such that $f,g,h$ are strictely positive integers
- How would I simplify this fraction easily?
- Decimal expansion of $\frac{1}{p}$: what is its period?
- To find the Modulus of a complex number
- Tan of difference of two angles given as sum of sines and cosines
- Positive Integer values of a fraction
- What is the range of the function $f(x)=\frac{4x(x^2+1)}{x^2+(x^2+1)^2}$?
- In resticted domain , Applying the Cauchy-Schwarz's inequality
- for $x,y,z\ge 0$, $x+y+z=2$, prove $\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{18}{13}$
- Interesting inequalities
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Take any positive continuous $f$ on $(0,\infty)$ such that
$$\int_0^1 f(t)\, dt = \infty=\int_1^\infty f(t)\, dt.$$
Then $F(x) = \int_1^x f(t)\, dt$ has the desired property.
Proof: By the FTC, $F'(x)=f(x)>0$ for all $x.$ Hence $F$ is strictly increasing, and therefore injective. Verify that $F(x)\to -\infty$ as $x\to 0^+,$ and $F(x)\to \infty$ as $x\to \infty.$ By the IVT, $F$ maps $(0,\infty)$ onto $\mathbb R.$
This gives lots of examples. For example, we could take $f(t) = t^{-3/2} + e^t.$ The corresponding $F(x)$ is $-2x^{-1/2} +e^x +2-e.$