I need a good note or book with plenty of examples in commutative algebra and algebraic geometry which surveyed being regular, Gorenstein, Cohen Macaulay, ....
Can you help?
thanks.
2026-02-22 21:00:22.1771794022
Note or book on Examples of regular, Gorenstein, Cohen Macaulay, ... rings
285 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in GORENSTEIN
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- Characterisation of Gorenstein Curve
- Example of Gorenstein ring that has infinite Krull dimension?
- If $R$ is generically Gorenstein, then $\operatorname{Ann}(\operatorname{Ann}(I))=I$ for every ideal $I$ with non-zero annihilator?
- On possible closure operation induced by derived functors
- Note or book on Examples of regular, Gorenstein, Cohen Macaulay, ... rings
- What is a hypersurface ring and why is it Gorenstein?
- Tor functor for the quotient of a Gorenstein local ring
- Localization of Gorenstein ring
- Matsumura, Exercise 18.8: Cohen-Macaulay and (not) Gorenstein
Related Questions in COHEN-MACAULAY
- Looking for easy example of 2-dimensional Noetherian domain which is not Cohen-Macaulay
- regular sequences: proving the geometric interpretation
- Completion and endomorphism ring of injective envelope
- Integral extension of a local ring is semilocal
- For a Cohen-Macaulay local ring grade and height are same
- Cohen-Macaulay ring without non-trivial idempotent is homomorphic image of Noetherian domain?
- Noetherian Catenary ring and Cohen-Macaulay ring
- Background of Commutative Algebra for Cohen-Macaulay orders and bibliography
- Is a quotient of ring of polynomials Cohen-Macaulay?
- Determining maximal Cohen-Macaulay modules over an invariant ring
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?