Problem: Count the number of $2 \times 2$ matrices $A$ with $A^TA=-I$ in $Z_p$ for $p>2$.
Answer: if $p$ is an odd prime, the number of such matrices $A$ is twice the number of solutions $(x,y)$ to the congruence $x^2+y^2 \equiv -1 \pmod p$.
What's the reason behind "twice"?
Let \begin{eqnarray*} A= \begin{bmatrix} a &b \\c &d \\ \end{bmatrix} . \end{eqnarray*} Then we require \begin{eqnarray*} \begin{bmatrix} a &c \\b &d \\ \end{bmatrix} \begin{bmatrix} a &b \\c &d \\ \end{bmatrix} = \begin{bmatrix} -1 &0 \\0 &-1 \\ \end{bmatrix} . \end{eqnarray*} So \begin{eqnarray*} a^2+c^2 \equiv -1 \pmod{p} \\ ab+cd \equiv 0 \pmod{p} \\ b^2+d^2 \equiv -1 \pmod{p} \\ \end{eqnarray*} After a little algebra with these \begin{eqnarray*} a^2b^2=b^2(-1-c^2)=c^2d^2 \\ c^2(\underbrace{d^2+b^2}_{-1})=-b^2 \end{eqnarray*} So $b=c$ or $b=p-c$. Giving two solutions for each pair $(a,c)$.