Can I say that $\|A\| < s$ where $A \in \mathbb{R}^{3 \times 3}$ is a symmetric, positive definite matrix and $s$ is the maximum eigenvalue of $A$. Here the norm used is operator norm.
2025-01-13 03:04:48.1736737488
Operator norm and eigenvalue inequality
1.2k Views Asked by Animesh https://math.techqa.club/user/animesh/detail At
1
There are 1 best solutions below
Related Questions in MATRICES
- Show CA=CB iff A=B
- What is the correct chain rule for composite matrix functions?
- Is the row space of a matrix (order n by m, m < n) of full column rank equal to $\mathbb{R}^m$?
- How to show that if two matrices have the same eigenvectors, then they commute?
- Linear Algebra: Let $w=[1,2,3]_{L_1}$. Find the coordinates of w with respect to $L$ directly and by using $P^{-1}$
- How to prove the cyclic property of the trace?
- Matrix expression manipulation
- Matrix subring isomorphic to $\mathbb{C}$
- Is the ellipsoid $x'Qx < \alpha$ equivalent to $\alpha Q^{-1} - x x' \succ 0$?
- Show that matrix $M$ is not orthogonal if it contains column of all ones.
Related Questions in EIGENVALUES-EIGENVECTORS
- Find the Jordan Normal From of a Matrix $A$
- Eigenvalue of an abstract linear map?
- How to show that if two matrices have the same eigenvectors, then they commute?
- Computing the eigenvector from a linearly independent system of equations
- $T(A)=BA$ implies geometric multiplicity of every eigenvalue of $T$ is $\ge n$.
- Solving $\frac{dx}{dt}=-2x-2y, \frac{dy}{dt}=-2x+y$ with initial condition $(x(0), y(0)) = (1, 0)$
- Let $T:\mathcal{P}(\mathbb{R})\to \mathcal{P}(\mathbb{R})$ such that $T(p)=p-p'$. Find all eigen values and eigen vectors of $T$.
- Is the Matrix Diagonalizable if $A^2=4I$
- Schur Decomposition and $GL_{2}(\mathbb{C})$
- Is this an acceptable way to find an eigenvalue?
Related Questions in NORMED-SPACES
- Closed / open set in $\ell^\infty$ metric space.
- orthonormal basis question - linear algebra
- If $\lim f'(x) = 0$, then $\lim f(x+1) - f(x) = 0$
- Why does for every matrix norm $\lVert \mathbb{I } \rVert \geq 1$ hold?
- Metric on $\mathbb R^2$ in which each sphere $B((x,y),r)$ is an equilateral triangle
- Does the canonical $\pi: X \to X/Y$ map the closed unit ball to the closed unit ball?
- Continuity of the function $\mathbb{R}^k \to\mathbb{R}: x\mapsto \ln(1+ \lVert x \rVert)$
- Prove spectral norm compatible with vector norm
- Is it a property of any vector norm on $\mathbb{C}^n$?
- A peculiar characterization of open balls in a Banach space
Related Questions in MATRIX-NORMS
- What is the explicit expression of the operator norm of $A$ : $(\mathbb{R}^n, |\cdot |_1) \rightarrow (\mathbb{R}^m, |\cdot |_{\infty}) $
- Derivative of Schatten $p$-norm
- Find $\|\cdot\|_2$ norm of block matrix
- Frobenius norm and submultiplicativity
- Definition of matrix norm induced by vector $p$-norm
- Equivalence of matrix norms
- Does the concept of submultiplicative norm make sense for non-square matrix?
- What is the lower bound on the Frobenius norm of a product of square matrices?
- Spectral Norm Proof
- Matrix $p$ norm
Related Questions in SPECTRAL-NORM
- How does a permutation $P$ affect the singular value $\sigma_{\text{max}}(Q^\top P^\top Q)$ for orthogonal $Q$?
- Spectral Norm Proof
- Spectral norm of a matrix of cosines
- Matrix $2$-norm condition
- Operator norm and eigenvalue inequality
- On finding the $2$-norm of a matrix
- Spectral norm of product of two matrices
- An inequality involving spectral norm of a matrix
- Relating orthogonal column distances to basis distances
- Nearest symmetric matrix with respect to the spectral norm
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
If $A$ is symmetric and positive definite, then its eigenvalues are real and positive. The spectral norm of $A$ is given by
$$\|A\|_2 := \sigma_{\max} (A) = \sqrt{\lambda_{\max} (A^T A)} = \sqrt{\lambda_{\max} (A^2)} = \sqrt{\lambda_{\max}^2 (A)} = |\lambda_{\max} (A)| = \lambda_{\max} (A)$$