This was a real question!
Given a unital C*-algebra $1\in\mathcal{A}$.
For $A\in\mathcal{A}$ denote its spectrum by $\sigma(A)$.
Consider the selfadjoints: $$\mathcal{A}_*:=\{A\in\mathcal{A}:A=A^*\}$$
Introduce an ordering: $$A,A'\in\mathcal{A}_*:\quad A\leq A':\iff\sigma(A'-A)\geq0$$
Then it is a partial order: $$A\leq A'\leq A\implies A=A'$$ $$A\leq A'\leq A''\implies A\leq A''$$ How can I prove this?*
*By results related to Functional Calculus and Neumann Series; but not Gelfand-Naimark!
Meanwhile I remember...
Reduction
By construction one has: $$A\leq B\implies A+C\leq B+C$$
Reflexivity
It hold the implications: $$0\leq A\leq0\implies\sigma(A)=(0)\implies r(A)=0\implies\|A\|=0\implies A=0$$ Concluding transitivity.
Characterization
For spectrum one has: $$\sigma(A+1)=\sigma(A)+\sigma(1)\quad\sigma(\lambda A)=\lambda\sigma(A)\quad\sigma(1)=(1)$$
For normals one has: $$N^*N=NN^*:\quad\|N\|=\|\sigma(N)\|=:r(N)$$
For selfadjoints one has: $$S=S^*:\quad-r(S)\leq\sigma(S)\leq r(S)$$
Transitivity
It hold the inequalities: $$\|(\|A\|+\|B\|)1-(A+B)\|\leq\|\|A\|1-A\|+\|\|B\|1-B\|\leq\|A\|+\|B\|$$ Concluding reflexivity.