Suppose a human being randomly chooses a real number $x$ with $0<x<1$. It seems the probability of choosing $x$ is closely related to the Kolmogorov complexity of $x$. That is, a number like $0.1$ or $0.333...$ which requires little information to specify has a high probability of being selected, while most reals between $0$ and $1$ are so complex they could never be specified by a human being, and thus have zero probability of being selected. Are there any probability distributions that formalize this sort of approach?
2026-02-22 23:24:51.1771802691
Probability distributions based on Kolmogorov complexity?
66 Views Asked by user485260 https://math.techqa.club/user/user485260/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in KOLMOGOROV-COMPLEXITY
- Average Kolmogorov complexity of an integer factorization
- Uncomputability of Kolmogorov complexity
- Motivation for Algorithmic Randomness Definition
- Proving a binary string of length i is less than or equal to $2^i$?
- Application of (Solomonoff) Algorithmic Probability formula?
- Probability distributions based on Kolmogorov complexity?
- Bound on the Kolmogorov complexity of integers
- Any examples of exact calculation of Kolmogorov Complexity??
- Is there an algorithmic complexity measure that strikes a balance between regularity and randomness of a string?
- Martin-Löf randomness tests relative to conditional probability?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There is - universal continuous a priori probability. It's essentially probability measure such that probability of sequence is equal to probability of random Turing machine printing this sequence. Of course probability of number is non-zero only if there is some Turing machine that prints this number, so only countable many numbers has non-zero probability to be selected.