Let HR be an Hilbert style proof system:
Inference rule: MP
Axiom schemes:
- $A\rightarrow A$
- $(A\rightarrow B)\rightarrow ((B\rightarrow C)\rightarrow(A\rightarrow C))$
- $(A\rightarrow(B\rightarrow C))\rightarrow(B\rightarrow(A\rightarrow C))$
- $(A\rightarrow(A\rightarrow B))\rightarrow B$
Prove formally that $p\rightarrow(q\rightarrow r)\vdash_{HR} (p\rightarrow q)\rightarrow r$
I've seen this similar question:
Proof for $\{p,p\rightarrow (q\rightarrow r)\}\vdash (p\rightarrow q)\rightarrow r$ in HR
However, they use $p$ as an additional assumption, and I don't know how to prove it without that assumption