Prove $\vdash_{HPI}A\vee(B\vee C) \rightarrow (A\vee B)\vee C $
From the axioms :
A1) A→(B→A)
A2) (A→(B→C))→((A→B)→(A→C))
A3) $(A\rightarrow B)\rightarrow((A\rightarrow\neg B)\rightarrow \neg A)$
A4) $\neg A\rightarrow A\rightarrow B$
A5) (A∧B)→A
A6) (A∧B)→B
A7) A→(B→(A∧B))
A8) A→(A∨B)
A9) B→(A∨B)
A10) (A→B)→((C→B)→((A∨C)→B))
and MP
I know by the deduction theorem it is enough to show $A\vee(B\vee C) \vdash_{HPI} (A\vee B)\vee C $.
It's clearly true because of associativity. However, I'm not sure how to prove it formally using only the axioms above.
Thanks
In the Hilbert-style proof system for propositional calculus above, we can use the "derived rule" of Hypothetical Syllogism :
With it, we have:
1) $B \to (A \lor B)$
2) $(A \lor B) \to (A \lor B) \lor C$
3) $B \to (A \lor B) \lor C$ --- from 1) and 2) by HS
4) $C \to (A \lor B) \lor C$
6) $A \to (A \lor B)$
7) $(A \lor B) \to (A \lor B) \lor C$
In order to prove Hypothetical Syllogism, we have :
$A \rightarrow B$ --- premise
$B \rightarrow C$ --- premise
$(B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$ --- A1)
$A \rightarrow (B \rightarrow C)$ --- from 2) and 3) by MP
$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ --- A2)
$(A \rightarrow B) \rightarrow (A \rightarrow C)$ --- from 4) and 5) by MP