How to prove that
$$ -2\log(2) = -2 + \sum_{n=1}^{\infty}\frac{1}{n(2n+1)} $$
I know that this sum is equal to $\phi(1/2)+\gamma$ where $\phi(x)$ is the digamma function and $\gamma$ is the Euler-Mascheroni constant, but I want to evaluate the sum without knowing it.
$$\frac{1}{2n(2n+1)}=\frac1{2n}-\frac1{2n+1}.$$ $$\sum_{n=1}^\infty\frac1{n(2n+1)} =2\sum_{n=1}^\infty\left(\frac1{2n}-\frac1{2n+1}\right) =2\sum_{m=2}^\infty\frac{(-1)^m}{m}.$$ Of course, $$\log2=-\sum_{m=1}^\infty\frac{(-1)^m}{m}.$$