Prove that $$\operatorname{frac}(\sqrt{n^2 + n}) \to \frac{1}{2}$$ ($n \in \mathbb{N}$, $\operatorname{frac}$ is fractional part of number)
I think I should use just definition of limit and find $N$ for all $\varepsilon > 0$.
Prove that $$\operatorname{frac}(\sqrt{n^2 + n}) \to \frac{1}{2}$$ ($n \in \mathbb{N}$, $\operatorname{frac}$ is fractional part of number)
I think I should use just definition of limit and find $N$ for all $\varepsilon > 0$.
Hint:
$$\left(n+\frac{1}{2}\right)^2 \geq n^2+n \geq \left(n+\frac{1}{2} -\frac{1}{n}\right)^2$$