I want compute this integral $$\int_0^1\int_0^1 \left\{ \frac{e^x}{e^y} \right\}dxdy, $$ where $ \left\{ x \right\} $ is the fractional part function.
Following PROBLEMA 171, Prueba de a), last paragraph of page 109 and firts two paragraphs of page 110,here in spanish, I say the case $k=1$.
When I take $x=\log u$ and $y=\log v$ then I can show that $$\int_0^1\int_0^1 \left\{ \frac{e^x}{e^y} \right\}dxdy=\int_1^e\int_1^e \left\{ \frac{x}{y} \right\}\frac{1}{xy}dxdy=I_1+I_2$$ since following the strategy in cited problem and take $t=\frac{1}{u}$ $$I_1:=\int_1^e\int_1^x \left\{ \frac{x}{y} \right\}\frac{1}{xy}dydx=\int_1^e\frac{1}{x}\int_{\frac{1}{x}}^1 \left\{ \frac{1}{t} \right\}\frac{dt}{t}dx=\int_1^e\int_1^x\frac{ \left\{ u \right\} }{u}dudx,$$ and since if there are no mistakes $$ \int_1^x\frac{ \left\{ u \right\} }{u}du = \begin{cases} x-1-\log x, & \text{if $1\leq x<2$} \\ 1+\log 2+(x-2)-2\log x, & \text{if $2\leq x\leq e$} \end{cases}$$ then $$I_1=\int_1^2\frac{1}{x}(x-1-\log x)dx+\int_1^2\frac{1}{x}(1+\log 2+(x-2)-2\log x)dx,$$ It is $I_1=-3+\log 2-\frac{\log^22}{2}+e$. On the other hand following the cited problem, since $y>x$ then $ \left\{ \frac{x}{y} \right\}= \frac{x}{y}$ and the second integral is computed as $$I_2:=\int_1^e\int_x^e \left\{ \frac{x}{y} \right\}\frac{1}{xy}dydx=\int_1^e\int_x^e \frac{x}{y} \frac{1}{y^2}dydx.$$ Thus I've computed $I_2=\frac{1}{e}$.
Question. I would to know if my computations with the fractional part function $ \left\{ x \right\} $ were rights (the evaluation of $ \int_1^x\frac{ \left\{ u \right\} }{u}du$ and $I_1$). Can you compute $$\int_0^1\int_0^1 \left\{ \frac{e^x}{e^y} \right\}^kdxdy$$ for the case $k=1$? (At least this case to see it as a proof verification of my computations; your are welcome if you provide us similar identities for integers $k\geq 1$, as in the cited problem). Thanks in advance.
Here is a solution:
By WP we have $\{x\}=x-\lfloor x \rfloor$. Then $$\iint_0^1 \left \{ \text{e}^x\text{e}^{-y} \right \} dxdy=\iint_0^1 \text{e}^x\text{e}^{-y} dxdy-\iint_0^1 \left \lfloor \text{e}^x\text{e}^{-y} \right \rfloor dxdy.$$
We also have $\left \lfloor \text{e}^x\text{e}^{-y} \right \rfloor =$ $0$ $(x<y)$, 2 $(y<x-\ln 2), 1$ (otherwise), in the region $0\leq x \leq 1$ $0 \leq y \leq 1$. Then $$\iint_0^1 \left \lfloor \text{e}^x\text{e}^{-y} \right \rfloor dxdy = \int_{0}^{1}\int_{x}^{1} 0\, dydx + \int_{0}^{1}\int_{0}^{x}1\,dydx + \int_{\ln 2}^{1}\int_{0}^{x-\ln 2}1\,dydx\\= 1 -\ln 2 + (\ln 2)^2 /2. $$
Putting this together gives $$\iint_0^1 \left \{ \text{e}^x\text{e}^{-y} \right \} dxdy= 1/\text{e} + \text{e} +\ln 2 - (\ln 2)^2/2 - 3 \approx 0.54 $$
Now we can use the same technique, along with the binomial formula, to find the solution to the general case. I assume $n \geq 1$. We have $$\iint_0^1 \left \{ \text{e}^{x-y} \right \}^n dxdy=\iint_0^1 \left ( \text{e}^{x-y}-\lfloor \text{e}^{x-y} \rfloor\right )^n dxdy\\ = \sum_{k=0}^n \begin{pmatrix}n \\ k\end{pmatrix} (-1)^k \iint_0^1 \text{e}^{(n-k)(x-y)}\lfloor \text{e}^{x-y} \rfloor^k dxdy.$$
We have $\lfloor\text{e}^{x-y} \rfloor^k$ = $0$ ($x<y$), $2^k$ ($y<x-\ln 2$), 1 (otherwise) in the domain $0\leq x \leq 1$, $0 \leq y \leq 1$, except for the case $k=0$ in which case $\lfloor\text{e}^{x-y} \rfloor^k=1$. Then
$$ \iint_0^1 \left \{ \text{e}^{x-y} \right \}^n dxdy = \sum_{k=0}^n \begin{pmatrix}n \\ k\end{pmatrix} (-1)^k \left [ \int_{0}^{1}\int_{0}^{x}\text{e}^{(n-k)(x-y)}dydx + \delta_{k,0}\int_{0}^{1}\int_{x}^{1}\text{e}^{(n-k)(x-y)}dydx\\ + (2^k-1)\int_{\ln 2}^{1}\int_{0}^{x-\ln 2}\text{e}^{(n-k)(x-y)}dydx \right],$$ where $\delta_{a,b}$ is the Kronecker delta. Solving the integrals and simplifying gives:
$$ \iint_0^1 \left \{ \text{e}^{x-y} \right \}^n dxdy = \frac{(-1)^n}{2}(2^n-2^{n+1}\ln 2 + [2^n-1][\ln 2]^2+\ln 4)+\frac{n-1+\text{e}^{-n}}{n^2}+\sum_{k=0}^{n-1} \begin{pmatrix}n \\ k\end{pmatrix} \frac{(-1)^k}{(n-k)^2} \left [ (k-n-1+\text{e}^{n-k}) + (2^k-1)(2\text{e})^{-k}(2^k\text{e}^n+2^n\text{e}^k[k-1+n(\ln 2 -1)-k\ln 2]) \right]$$