$$ \begin{vmatrix} \cos 2x & \cos 2y & \cos 2u \\ \sin^2 x & \sin^2 y & \sin^2 u \\ 1 & 1 & 1 \end{vmatrix} = 0 $$
This is the conclusion where I got from another excercise and I want to prove me it is right. Please don't use the fact that $\cos(2x)=\cos^2x-\sin^2x$. We haven't learned it yet.
Here's how easy it is if you do use $\cos(2x) = 1-2\sin^2(x)$:
$$\begin{align}\left|\begin{matrix} \cos(2x) & \cos(2y) & \cos(2u) \\ \sin^2(x) & \sin^2(y) & \sin^2(u) \\ 1 & 1 & 1\end{matrix} \right| &= \left|\begin{matrix} 1-2\sin^2(x) & 1-2\sin^2(y) & 1-2\sin^2(u) \\ \sin^2(x) & \sin^2(y) & \sin^2(u) \\ 1 & 1 & 1\end{matrix} \right| \\ &= \left|\begin{matrix} 1 & 1 & 1 \\ \sin^2(x) & \sin^2(y) & \sin^2(u) \\ 1 & 1 & 1\end{matrix} \right| - 2\left|\begin{matrix} \sin^2(x) & \sin^2(y) & \sin^2(u) \\ \sin^2(x) & \sin^2(y) & \sin^2(u) \\ 1 & 1 & 1\end{matrix} \right|\end{align}$$
This equals zero because the determinant of any matrix with a repeated row (or column) is $0$.
So maybe it's time to learn some trig.