Given that this integral I'm trying to solve is $$\frac{2}{\pi}\sum^{\infty}_{l=0}\sum^{l}_{m=-l}\int_{r=0}^{\infty}\int_{k=0}^{\infty} R_{nl}(r)b_{lm}(k)j_{l}(kr)k^2 r^2 \int_{\theta = 0}^{\pi}\int_{\phi=0}^{2\pi} Y^*_{lm}(\theta,\phi)Y_{l'm'}(\theta, \phi)\sin\theta d\phi d\theta dkdr$$ where $R_{nl}(r)$ is the Radial Wave Solution of the Hamiltonian of the Hydrogen atom, $b_{lm}(k)$ is a spectral function that depends on $k$, $j_l(kr)$ is the Spherical Bessel Function and $Y_{lm}(\theta, \phi)$ is the Spherical Harmonics. Given the orthonormal relations of the Spherical Harmonics, the integral should technically then becomes $$\frac{2}{\pi}\sum^{\infty}_{l=0}\sum^{l}_{m=-l}\int_{r=0}^{\infty}\int_{k=0}^{\infty} R_{nl}(r)b_{lm}(k)j_{l}(kr)k^2 r^2 dkdr \delta_{ll'}\delta_{mm'}$$ I have a very simple question which is how does this integral usually proceed from here with the sums and Kronecker delta given that they are summing over two different indices, do the sums not just collapse to one term where $l=l'$ and $m=m'$?
2026-02-22 23:08:42.1771801722
Quantum Mechanics - Orthonormal Basis integration and Kronecker delta
149 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in QUANTUM-MECHANICS
- Is there a book on the purely mathematical version of perturbation theory?
- Matrix differential equation and matrix exponential
- "Good" Linear Combinations of a Perturbed Wave Function
- Necessary condition for Hermician lin operators
- What is a symplectic form of the rotation group SO(n)
- Why is $\textbf{J}$ called angular momentum?(Quantum)
- How does the quantumstate evolve?
- Differential equation $au''(x)+b\frac{u(x)}{x}+Eu=0$
- How to model this system of $^{238}\,U$ atoms?
- Discrete spectra of generators of compact Lie group
Related Questions in SPHERICAL-HARMONICS
- Finding the kernel of a linear map gotten from a linear map with one kind of bessel function $j_i$ and replacing them with the $y_j$
- Reparametrization of the spherical harmonics so they will be complete in a different region.
- Does it make sense to talk about "frequency" when expanding a function using spherical harmonics?
- derivative of a square-integrable function on the sphere
- Integral of the product of spherical harmonics and derivatives of spherical harmonics
- Spherical Harmonic Identity
- Spherical Harmonic Derivative
- Integral of product of three spherical harmonics with derivatives
- Are the dot products of all vector spherical harmonics complete?
- Calculating a normal vector field for a surface defined by spherical harmonics
Related Questions in KRONECKER-DELTA
- Simplifying Product of Kronecker Delta Functions
- Looking for ${f_n}$ such that $\int_0^1 (x-t)^{m-1}f_n(t) dt = \delta_{n,m}$
- How to proof that a dual basis applied to the basis give the Kronecker delta?
- How is the dot product of two cartesian unit vectors equal to the Kroencker delta?
- Trouble with delta kronecker
- Equation containing cofactor of derivative and Kronecker-delta
- Do these integrals evaluate to terms involving Kronecker Deltas?
- Quantum Mechanics - Orthonormal Basis integration and Kronecker delta
- Does changing the order of the indices of the Kronecker delta within a summation matter?
- Kronecker Delta with 3 indices
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
They do indeed. Put another way: If you integrate a linear superposition of orthonormal basis functions with one of the basis functions, you get the coefficient of that basis function.