How to check whether the function $$f(x)=x\sin\bigg(\frac{1}{1+x^2}\bigg)$$ is Lipschitz or not on $\mathbb{R}?$ I tried by considering $$\bigg|\frac{x \sin\Big(\frac{1}{1+x^2}\Big)-y \sin\Big(\frac{1}{1+y^2}\Big)}{x-y} \bigg|\leq C.$$ Then how to proceed further?
2026-02-22 21:15:13.1771794913
Bumbble Comm
On
Question on Lipschitz continuity
60 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
Given that $\frac{2x^2}{(1+x^2)^2}=\frac{x^2}{(1+x^2)}\frac{1}{(1+x^2)}\le 2$ we have, $$\left|f'(x)\right|= \left|\sin\left(\frac{1}{1+x^2}\right)-\frac{2x^2}{(1+x^2)^2}\cos\left(\frac{1}{1+x^2}\right)\right|\\\le\left|\sin\left(\frac{1}{1+x^2}\right)\right|+\left|\frac{2x^2}{(1+x^2)^2}\cos\left(\frac{1}{1+x^2}\right)\right|\le 3$$
is bounded then it is Lipschitz with constant $3$.
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in ALGEBRA-PRECALCULUS
- How to show that $k < m_1+2$?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Finding the value of cot 142.5°
- Why is the following $\frac{3^n}{3^{n+1}}$ equal to $\frac{1}{3}$?
- Extracting the S from formula
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Solving an equation involving binomial coefficients
- Is division inherently the last operation when using fraction notation or is the order of operation always PEMDAS?
- How is $\frac{\left(2\left(n+1\right)\right)!}{\left(n+1\right)!}\cdot \frac{n!}{\left(2n\right)!}$ simplified like that?
- How to solve algebraic equation
Related Questions in FUNCTIONS
- Functions - confusion regarding properties, as per example in wiki
- Composition of functions - properties
- Finding Range from Domain
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Lower bound of bounded functions.
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
Related Questions in LIPSCHITZ-FUNCTIONS
- Equivalence for a reversed Lipschitz-type condition
- Compact sets in uniform norm
- Does locally Lipschitz imply Lipschitz on closed balls?
- An upper bound for $\|2 \nabla f(x) - \nabla f(y)\|$ in terms of $\|x-y\|$ if the gradient is $L$-Lipschitz
- Nowhere-differentiable Lipschitz-continuous function
- How to prove the following function is not Lipschitz continuous?
- Question on Lipschitz continuity
- Is the Borel isomorphic interchanging-digit map a k-Lipschitz map?
- Could lower semicontinuous functions have Lipschitz constant?
- Showing a function is Lipschitz
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
using the mean value Theorem we get $$|f(x)-f(y)|=\left|\frac{-2\xi^2}{(1+\xi^2)^2}\cos\left(\frac{1}{1+\xi^2}\right)+\sin\left(\frac{1}{1+\xi^2}\right)\right||x-y|$$ and $$f'(\xi)$$ is bounded