From Williams' Probability w/ Martingales:
- Are we allowed to switch derivative and integral as follows:
$$\frac{\partial}{\partial \lambda} \int_{0}^{\infty} e^{-\lambda x} f(x) = \int_{0}^{\infty} \frac{\partial}{\partial \lambda} e^{-\lambda x} f(x) $$
?
Why/Why not?
- Assuming the $E[f(S_n)]$ equation is true, how does one prove the $f(y)$ equation?
That is, consider $E[f(S_n)]$ as a function of $\lambda$:
$$E[f(S_n)] = E[f(S_n)](\lambda) = \frac{(-1)^n (\lambda)^n L^{n-1}(\lambda)}{(n-1)!}$$
If $\lambda = \frac{n}{y}$, then
$$E[f(S_n)](\frac{n}{y}) = \frac{(-1)^n (\frac{n}{y})^n L^{n-1}(\frac{n}{y})}{(n-1)!}$$
How does one prove that
$$\lim_{n \to \infty} E[f(S_n)](\frac{n}{y}) \left(= \lim_{n \to \infty} \frac{(-1)^n (\frac{n}{y})^n L^{n-1}(\frac{n}{y})}{(n-1)!} \right) = f(y)?$$
Define $B_n(y) := E[f(S_n)](n/y)$, $Y_n := |f(S_n) - f(y)|$ and $Z_n := |S_n - y|$
Since f is bounded and continuous on $[0,\infty)$, it is bounded and continuous on $[0,M] \ \forall M > 0$ and hence uniformly continuous in $[0,M]$.
$\to \forall \epsilon > 0, \exists \delta > 0 \forall x, y \in [0,M]$ s.t.
$$Z_n \le \delta \to Y_n < \epsilon/2$$
Let us try to show that $\forall \epsilon > 0, \exists N > 0$ s.t. $n > N \ \to \ |B_n(y) - f(y)| < \epsilon$:
$$|B_n(y) - f(y)|$$
$$ = |E[f(S_n)](n/y) - f(y)|$$
$$ = |E[f(S_n)](\lambda)|_{\lambda = n/y} - f(y)|$$
$$ = |(E[f(S_n)] - f(y))(\lambda)|_{\lambda = n/y}|$$
$$ = |(E[f(S_n) - f(y)])(\lambda)|_{\lambda = n/y}|$$
$$ = (|E[f(S_n) - f(y)]|)(\lambda)|_{\lambda = n/y}$$
By Jensen's Inequality,
$$ \le (E[|f(S_n) - f(y)|])(\lambda)|_{\lambda = n/y}$$
Omitting $\lambda$ for now
$$ = E[|f(S_n) - f(y)|]$$
$$ = E[Y_n]$$
$$ = E[Y_n 1_{Z_n \le \delta} + Y_n 1_{Z_n > \delta}]$$
$$ = E[Y_n 1_{Z_n \le \delta}] + E[Y_n 1_{Z_n > \delta}]$$
$$ < E[\epsilon/2 1_{Z_n \le \delta}] + E[Y_n 1_{Z_n > \delta}]$$
$$ = \epsilon/2 E[1_{Z_n \le \delta}] + E[Y_n 1_{Z_n > \delta}]$$
$$ = \epsilon/2 P(Z_n \le \delta) + E[Y_n 1_{Z_n > \delta}]$$
$$ = \epsilon/2 (1) + E[Y_n 1_{Z_n > \delta}]$$
$$ = \epsilon/2 + E[Y_n 1_{Z_n > \delta}]$$
$$ \le \epsilon/2 + E[2K 1_{Z_n > \delta}]$$
$$ = \epsilon/2 + 2K E[ 1_{Z_n > \delta}]$$
$$ = \epsilon/2 + 2K P(Z_n > \delta)$$
$$ \le \epsilon/2 + 2K \frac{1}{n \lambda^2 \delta^2}$$
$$\le \epsilon/2 + \epsilon/2 = \epsilon$$
if we choose $\color{red}{N}$ as such:
$$2K \frac{1}{n \lambda^2 \delta^2} < \epsilon/2$$
$$\frac{1}{n \lambda^2 \delta^2} < \frac{\epsilon}{4K}$$
$$\frac{1}{n} < \frac{\lambda^2 \delta^2 \epsilon}{4K}$$
$$n > \frac{4K}{\lambda^2 \delta^2 \epsilon} \color{red}{= N}$$
Not sure what to do about the $\lambda$, but it seems that $\forall \epsilon > 0$,
$$n > \frac{4K}{\lambda^2 \delta^2 \epsilon} \to Y_n < \epsilon/2$$
$$\to |B_n(y) - f(y)| < \epsilon \ QED$$
$$\therefore \ \lim_{n \to \infty} B_n(y) = f(y)$$