Let $t\mapsto X_t(\omega)$ be the sample path of a Brownian motion $X$. Certainly it is possible for the sample path to be Hölder continuous on a bounded interval $[0,K]$ but can it be Hölder continuous on all of $[0,\infty)$?
2026-02-22 21:23:43.1771795423
Sample path of Brownian motion Hölder continuous?
3k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY-THEORY
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Another application of the Central Limit Theorem
- proving Kochen-Stone lemma...
- Is there a contradiction in coin toss of expected / actual results?
- Sample each point with flipping coin, what is the average?
- Random variables coincide
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- Determine the marginal distributions of $(T_1, T_2)$
- Convergence in distribution of a discretized random variable and generated sigma-algebras
Related Questions in BROWNIAN-MOTION
- Compute the covariance of $W_t$ and $B_t=\int_0^t\mathrm{sgn}(W)dW$, for a Brownian motion $W$
- Why has $\sup_{s \in (0,t)} B_s$ the same distribution as $\sup_{s \in (0,t)} B_s-B_t$ for a Brownian motion $(B_t)_{t \geq 0}$?
- Identity related to Brownian motion
- 4th moment of a Wiener stochastic integral?
- Optional Stopping Theorem for martingales
- Sample path of Brownian motion Hölder continuous?
- Polar Brownian motion not recovering polar Laplacian?
- Uniqueness of the parameters of an Ito process, given initial and terminal conditions
- $dX_t=\alpha X_t \,dt + \sqrt{X_t} \,dW_t, $ with $X_0=x_0,\,\alpha,\sigma>0.$ Compute $E[X_t] $ and $E[Y]$ for $Y=\lim_{t\to\infty}e^{-\alpha t}X_t$
- Why is $\int_0^t t \, dW_s$ not a martingale?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
No, Brownian motion is a.s. not Holder continuous of any exponent on all of $[0,\infty)$.
For a short proof, we recall two facts about Brownian motion:
On compact intervals, it is Holder-continuous of every exponent $\alpha<1/2$, but not $\alpha \geq 1/2$.
As $t\to \infty$, the random variables $t^{-1/2}B_t$ converge in distribution to $N(0,1)$, since trivially, $t^{-1/2}B_t\sim N(0,1)$ for all $t$.
Now for contradiction, suppose that (with positive probability) Brownian motion is Holder-$\gamma$ on all $[0,\infty)$. Then by (1), we necessarily have that $\gamma<1/2$, which contradicts (2) since $t^{-1/2}B_t$ would then converge to $0$ with positive probability.