I need to solve the following integral: $$ I = \int_{0}^{\infty} \frac{x^{-z}}{(1 + x)^{2}} ~ \mathrm{d}{x}. $$
Wolfram Alpha gives the answer as $ \frac{\pi z}{sin(\pi z)}$, or equivalently, $\pi z csc(\pi z)$
My ultimate goal is to demonstrate that $z!(-z)! = \frac{\pi z}{sin(\pi z)}$
So far, I arrived at this integral by gamma and beta functions:
$$ z!(-z)! = \Gamma(z+1)\Gamma(-z+1) = \Gamma(m)\Gamma(n)\\ = B(z+1,-z+1)\Gamma(m+n) = B(z+1,-z+1)\Gamma(2)\\ \\ =B(z+1,-z+1) = \int_{0}^{\infty} \frac{x^{-z+1-1}}{(1 + x)^{2}} ~ \mathrm{d}{x}\\ = \int_{0}^{\infty} \frac{x^{-z}}{(1 + x)^{2}} ~ \mathrm{d}{x} $$
This integral is effectively the answer. Can you solve this with a contour integral? Also, is there a special name for this integral?
By considering the contour integral
$$\oint_C d\zeta \frac{\zeta^{-z}}{(1+\zeta)^2} $$
about a keyhole contour and using the residue theorem, we may derive the relation
$$\left (1-e^{-i 2 \pi z} \right) \int_0^{\infty} dx \frac{x^{-z}}{(1+x)^2} = i 2 \pi \left [\frac{d}{d\zeta} e^{-z \log{\zeta}} \right ]_{\zeta=e^{i \pi}} = i 2 \pi (-z e^{-i \pi} ) e^{-i \pi z}$$
The result follows after a little algebra.