Compute from Left-Side: $$ {n \choose p} {n-p \choose k-p} = {n \choose k-p \quad p \quad n-k } = {n \choose k} {k \choose p}$$
So i started computing until:
$$ ={n \choose p} {n-p \choose k-p}$$ $$=\left(\frac{(n!)}{(p!) (n-p)!}\right) \left(\frac{(n-p)!}{(k-p)! ((n-p)-(k-p))!}\right) $$ $$=\left(\frac{(n!)}{(p!) (n-p)!}\right) \left(\frac{(n-p)!}{(k-p)! (n-k)!}\right) $$
and this is where i get stuck. How can i continue breaking this down until it equals the right-side? What algebraic definitions or binomial theorems am i not understanding? help?
You can have $$\frac{n!}{p!\color{red}{(n-p)!}}\cdot\frac{\color{red}{(n-p)!}}{(k-p)!((n-p)-(k-p))!}=\frac{n!}{p!(k-p)!(n-k)!}.$$ Now, mutiplying this by $\frac{k!}{k!}\ (=1)$ gives $$\frac{n!}{p!(k-p)!(n-k)!}\cdot\frac{k!}{k!}=\frac{n!}{k!(n-k)!}\cdot\frac{k!}{p!(k-p)!}=\binom{n}{k}\binom{k}{p}.$$