Solve the equation,
$$ \sin^{-1}x+\sin^{-1}(1-x)=\cos^{-1}x $$
My Attempt: $$ \cos\Big[ \sin^{-1}x+\sin^{-1}(1-x) \Big]=x\\ \cos\big(\sin^{-1}x\big)\cos\big(\sin^{-1}(1-x)\big)-\sin\big(\sin^{-1}x\big)\sin\big(\sin^{-1}(1-x)\big)=x\\ \sqrt{1-x^2}.\sqrt{2x-x^2}-x.(1-x)=x\\ \sqrt{2x-x^2-2x^3+x^4}=2x-x^2\\ \sqrt{x^4-2x^3-x^2+2x}=\sqrt{4x^2-4x^3+x^4}\\ x(2x^2-5x+2)=0\\ \implies x=0\quad or \quad x=2\quad or \quad x=\frac{1}{2} $$ Actual solutions exclude $x=2$.ie, solutions are $x=0$ or $x=\frac{1}{2}$. I think additional solutions are added because of the squaring of the term $2x-x^2$ in the steps.
So, how do you solve it avoiding the extra solutions in similar problems ?
Note: I dont want to substitute the solutions to find the wrong ones.
The domain gives $$-1\leq x\leq1$$ and $$-1\leq1-x\leq1,$$ which gives $$0\leq x\leq1,$$ which says that the answer is $$\left\{\frac{1}{2},0\right\}.$$ I think it's better after your third step to write $$\sqrt{2x-x^2}=\sqrt{1-x^2}$$ or $x=0$.