Today here stumbled upon such a limit. He began to solve it, and then I can not understand what to do. $$\lim _{x\to \infty }\left(\frac{x+2}{x+3}\right)^{2x+3}=\lim _{x\to \infty }\left(\:e^{ln\left(\frac{x+2}{x+3}\right)^{2x+3}}\right)=\lim _{x\to \infty }\left(e^{\left(2x+3\right)\cdot \:\:ln\left(\frac{x+2}{x+3}\right)}\right)$$ What's next?
The answer should be: $\frac{1}{e^2}$
Notice that: $$\left(\frac{x+2}{x+3}\right)^{2x+3} = \left(\frac{x+3}{x+3}- \frac{1}{x+3} \right)^{2x+3} = \left(1- \frac{1}{x+3} \right)^{2x+3} = \\ = \left(1- \frac{2}{2x+6} \right)^{2x+6-3}= \left(1- \frac{2}{2x+6} \right)^{2x+6}\left(1- \frac{2}{2x+6} \right)^{-3}$$
Now, perform a change of variable, say $t = 2x+6$. Then:
$$\lim _{x\to \infty }\left(\frac{x+2}{x+3}\right)^{2x+3} = \lim _{t\to \infty }\left(1- \frac{2}{t} \right)^{t}\left(1- \frac{2}{t} \right)^{-3} = \\=e^{-2}(1-0)^{-3} = \frac{1}{e^2}$$
since
$$\lim _{t\to \infty }\left(1+ \frac{k}{t} \right)^{t} = e^k$$