Please I want to check my answer weither is wrong or right, I found that this limit is equal to 1/3, can you check for me please?
$\lim _{x\to \infty \:}\left(x\left(\sqrt{x^2+1}-\sqrt[3]{x^3+1}\right)\right)$
Without l'hopital, thanks in advance
Please I want to check my answer weither is wrong or right, I found that this limit is equal to 1/3, can you check for me please?
$\lim _{x\to \infty \:}\left(x\left(\sqrt{x^2+1}-\sqrt[3]{x^3+1}\right)\right)$
Without l'hopital, thanks in advance
HINT:
Set $1/x=h\implies h\to0^+$
$F=\lim _{x\to \infty \:}\left(x\left(\sqrt{x^2+1}-\sqrt[3]{x^3+1}\right)\right)$ $=\lim_{h\to0^+}\dfrac{(1+h^2)^{1/2}-(1+h^3)^{1/2}}{h^2}$
As lcm$(2,3)=6,$ use $a^6-b^6=(a-b)(a^5+a^4b+\cdots+ab^4+b^5)$ to get
$F=\lim_{h\to0^+}\dfrac{(1+h^2)^3-(1+h^3)^2}{h^2}\cdot\dfrac1{\lim_{h\to0^+}\sum_{r=0}^5((1+h^2)^{1/2})^r\cdot((1+h^3)^{1/3})^{(5-r)}}$
$=\lim_{h\to0^+}\dfrac{1+3h^2+3h^4+h^6-(1+3h^3+h^6)}{h^2}\cdot\dfrac1{\sum_{r=0}^51}=\dfrac36$