I don't know if I can do this with my limit:
$$\lim _{n\rightarrow \infty }{\frac {n \left( 2\,n \right) ^{2\,n}{ {\rm e}^{-2\,n}}}{ \left( 2\,n \right) !} \left( {\frac { \left( 2\,n \right) !}{ \left( 2\,n \right) ^{2\,n}{{\rm e}^{-2\,n}}}}-{\frac { \left( 2\,n+2 \right) !}{ \left( 2\,n+2 \right) ^{2\,n+2}{{\rm e}^{-2 \,n-2}}}} \right) }= $$
$$=\lim _{n\rightarrow \infty }{\frac {n}{ \sqrt{4\,\pi \,n}} \left( { \frac { \left( 2\,n \right) !}{ \left( 2\,n \right) ^{2\,n}{{\rm e}^{- 2\,n}}}}-{\frac { \left( 2\,n+2 \right) !}{ \left( 2\,n+2 \right) ^{2 \,n+2}{{\rm e}^{-2\,n-2}}}} \right) }= $$
$$=\lim _{n\rightarrow \infty }{\frac {n \left( 2\,n \right) !}{ \left( 2 \,n \right) ^{2\,n}{{\rm e}^{-2\,n}} \sqrt{4\,\pi \,n}}}-\lim _{n \rightarrow \infty }{\frac {n \left( 2\,n+2 \right) !}{ \left( 2\,n+2 \right) ^{2\,n+2}{{\rm e}^{-2\,n-2}} \sqrt{4\,\pi \,n}}}= $$
$$=\lim _{n\rightarrow \infty }{\frac {n \sqrt{4\,\pi \,n}-n \sqrt{2\, \pi \, \left( 2\,n+2 \right) }}{ \sqrt{4\,\pi \,n}}}= \lim _{n\rightarrow \infty }\frac {\sqrt{2\,{n}^{2}}- \sqrt{2\,{n}^{ 2}+2\,n}}{ \sqrt{2}}. $$
Is "legal" to separate the limit, apply Stirling and then reattach it?
Thanks.
You can separate the limit into two terms or factors if both of them converge.
You don't need to separate them to apply Stirling's formula.
You don't even need to apply Stirling's approximation at all, since the factorials in the numerators and denominator cancel each other almost completely out.