If $\vec x$ is a vector of dimension $n$ and $A$ is a symmetric matrix of dimension $n\times n$. I would like to know what is the standard result for computing the following expression?
$$\frac{\partial}{\partial {\vec x}}\exp(-{\vec x}^T\cdot A \cdot {\vec x})$$
So far, for me:
$$\frac{\partial}{\partial {\vec x}}\exp(-{\vec x}^T\cdot A \cdot {\vec x}) = -(A\cdot {\vec x} +{\vec x}^T\cdot A)\exp(-{\vec x}^T\cdot A \cdot {\vec x})$$
Am I missing something to get the exact result?
Let $f : \mathbb R^n \to \mathbb R$ be defined by
$$f (\mathrm x) := \exp \left( - \rm x^\top A \, x \right)$$
Hence,
$$\begin{array}{rl} f (\mathrm x + h \mathrm v) &= \exp \left( - (\mathrm x + h \mathrm v)^\top \mathrm A \, (\mathrm x + h \mathrm v) \right)\\ &= \exp \left( - \mathrm x^\top \mathrm A \, \mathrm x - h \, \mathrm v^\top \mathrm A \,\mathrm x - h \, \mathrm x^\top \mathrm A \,\mathrm v - h^2 \, \mathrm v^\top \mathrm A \,\mathrm v \right)\\ &= \exp \left( - \rm x^\top A \, x \right) \exp \left( - h \left(\mathrm v^\top \mathrm A \,\mathrm x + \mathrm x^\top \mathrm A \,\mathrm v \right) \right) \exp \left( - h^2 \, \mathrm v^\top \mathrm A \,\mathrm v \right)\\ &= f (\mathrm x) \left( 1 - h \left(\mathrm v^\top \mathrm A \,\mathrm x + \mathrm x^\top \mathrm A \,\mathrm v \right) + O \left(h^2\right) \right)\\ &= f (\mathrm x) - h \, f (\mathrm x) \left(\mathrm v^\top \mathrm A \,\mathrm x + \mathrm x^\top \mathrm A \,\mathrm v \right) + O \left(h^2\right)\end{array}$$
Thus, the directional derivative of $f$ in the direction of $\rm v$ at $\rm x$ is
$$\begin{array}{rl} \displaystyle\lim_{h \to 0} \dfrac{f (\mathrm x + h \mathrm v) - f (\mathrm x)}{h} &= - f (\mathrm x) \left(\mathrm v^\top \mathrm A \,\mathrm x + \mathrm x^\top \mathrm A \,\mathrm v \right)\\ &= - f (\mathrm x) \left( \langle \mathrm v , \mathrm A \,\mathrm x \rangle + \langle \mathrm A^\top \mathrm x , \mathrm v \rangle \right)\\ &= \langle \mathrm v , \color{blue}{- f (\mathrm x)\left(\mathrm A + \mathrm A^\top\right) \,\mathrm x} \rangle\end{array}$$
Lastly, the gradient of $f$ with respect to $\rm x$ is
$$\nabla_{\mathrm x} \, f (\mathrm x) = \color{blue}{- f (\mathrm x)\left(\mathrm A + \mathrm A^\top\right) \,\mathrm x}$$
If $\rm A$ is symmetric, then
$$\nabla_{\mathrm x} \, f (\mathrm x) = \color{blue}{- 2 \, f (\mathrm x) \, \mathrm A \mathrm x}$$
multivariable-calculus scalar-fields gradient