Suppose that events $A$, $B$ and $C$ satisfy $P(A\cap B\cap C) = 0$ and each of them has probability not smaller than $\frac{2}{3}$. Find $P(A)$.
I'm confused if there is a unique $P(A)$? Thanks!
Suppose that events $A$, $B$ and $C$ satisfy $P(A\cap B\cap C) = 0$ and each of them has probability not smaller than $\frac{2}{3}$. Find $P(A)$.
I'm confused if there is a unique $P(A)$? Thanks!
On
Bonferroni's inequality states that $$P(A_1\cap\cdots\cap A_n) \ge P(A_1)+\cdots+P(A_n)-(n-1)P(A_1\cup\cdots\cup A_n)\ .$$ Take $n=3$, relabel the events as $A,B,C$ and solve for $P(A)$ to give $$P(A)\le P(A\cap B\cap C)+2P(A\cup B\cup C)-P(B)-P(C)\ .$$ Now obviously $P(A\cup B\cup C)\le1$, it is given that $P(A\cap B\cap C)=0$ and it is also given that $P(B),P(C)\ge\frac23$. Substituting yields $$P(A)\le\frac23\ ,$$ and you already know $P(A)\ge\frac23$, hence $P(A)=\frac23$.
$$P(A\cap B\cap C)=P(A)+P(B)+P(C)-[P(A\cup B)+P(B\cup C)+P(A\cup C)-P(A\cup B\cup C)]=0,$$ $$P(A\cup B)+P(B\cup C)+P(A\cup C)-P(A\cup B\cup C)\ge2,$$
but $$P(A\cup B)+P(B\cup C)+[P(A\cup C)-P(A\cup B\cup C)]\le 1+1+0=2,$$
so $$P(A\cup B)+P(B\cup C)+P(A\cup C)-P(A\cup B\cup C)=2,$$
this in turn results in, $$P(A)+P(B)+P(C)=2,$$
but, $$P(A),P(B),P(C)\ge\frac23,$$
so, $$P(A)=P(B)=P(C)=\frac23.$$