The only part I am having difficulty justifying is why there exists a $W_x \in \{W_\alpha\}$ that intersects only finitely many sets in $\{\mbox{Supp } \psi_\alpha \}$
2026-02-22 21:28:02.1771795682
Theorem 41.7 in Munkres Topology
112 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in CONTINUITY
- Continuity, preimage of an open set of $\mathbb R^2$
- Define in which points function is continuous
- Continuity of composite functions.
- How are these definitions of continuous relations equivalent?
- Show that f(x) = 2a + 3b is continuous where a and b are constants
- continuous surjective function from $n$-sphere to unit interval
- Two Applications of Schwarz Inequality
- Show that $f$ with $f(\overline{x})=0$ is continuous for every $\overline{x}\in[0,1]$.
- Prove $f(x,y)$ is continuous or not continuous.
- proving continuity claims
Related Questions in PARACOMPACTNESS
- normal doesn't imply paracompact
- Space of Sequences with Finitely Many Nonzero Terms is Paracompact
- Theorem 41.7 in Munkres Topology
- Tietze extension theorem for vector bundles on paracompact spaces
- Proof a theorem about Metrizable manifold
- Every $F_\sigma$-set in a paracompact space is paracompact.
- Uncountable product of many copies of $\mathbb{Z}$ is not paracompact
- Locally compact topological group is paracompact
- A cover of Locally connected space with certain compactness property
- Partitions of unity $\Leftrightarrow$ Hausdorff + Second-countable (in locally Euclidean space)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

I think this is a subtle point. Let $W_x$ be one of the sets in the collection $\{W_\alpha\}$ such that $x \in W_x$. Let $W_\alpha$ be another set in the same collection. For simplicity of notation, let $S_\alpha$ be the support of $\psi_\alpha$. The subtlety is that $S_\alpha$ is a closed set: it is the smallest closed set containing the open set $O_\alpha = \psi_\alpha^{-1}(\mathbb{R}\setminus\{0\})$.
We have the following relationships:
$$W_\alpha \subset \overline{W_\alpha} \subset O_\alpha \subset V_\alpha.$$
Suppose that $y \in W_x \cap S_\alpha$. If $y \in O_\alpha$, then $y \in V_x \cap V_\alpha$. If $y$ belongs to the frontier (sometimes called the boundary) of $O_\alpha$, then since $W_x$ is an open neighborhood of $y$ it must intersect both $O_\alpha$ (and its complement) and so $W_x \cap O_\alpha \neq \emptyset$; therefore $V_x \cap V_\alpha \neq \emptyset$ in this second case as well.
Since the collection $\{V_\alpha\}$ is locally finite, there can only be finitely many such pairs of indices $x$ and $\alpha$ such that $W_x \cap S_\alpha \neq \emptyset$.