To show that the series $\sum_{k=1}^{\infty} {{1}\over {k}}$ diverges ; I have to prove that $${\sum_{k=1}^{n}}{{1}\over{k}} \ge {\log n}$$ The given hint is that $${{1}\over {k}}\ge \int_k^{k+1} {1\over x} dx$$
Now,evaluating the RHS, say $$L=\int_k^{k+1} {1\over x} dx\\=\log(k+1)-\log\ k\\=\log(1+{1\over k})\\={1\over k}-{1\over{2k^2}}+{1\over {3k^3}}-......$$ How can I tell this is $L \le {1\over k}?$
If this part is proved then I guess the following is like :
$$\sum_{k=1}^n {1\over k}\ge\int_1^2{1\over x}dx +\int_2^3{1\over x}dx +....\int_n^{n+1} {1\over x} dx = \int_1^{n+1} {1\over x} dx=log(n+1)$$
How to reach the conclusion $?$ . This is going nowhere .
Hint: Use the telescopic nature of the expression $\log(k+1)-\log(k)$.
For example when $n=3$, you have shown that
$\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \geq \log(2)-\log(1)+\log(3)-\log(2)+\log(4)-\log(3) = \log(4)-\log(1)$.
Take the limit as $n \to \infty$ and observe the expression on the right hand side of the inequality.