I am wondering whether the following two formal power series are equal: $A(x)=\Pi_{k=1}^{\infty}\frac{1}{1-x^{2k-1}}$, $B(x)=\Pi_{k=1}^{\infty}(1+x^k)$.
2026-02-22 19:50:50.1771789850
To show two formal power series equal
181 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in COMBINATORICS
- Using only the digits 2,3,9, how many six-digit numbers can be formed which are divisible by 6?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Hard combinatorial identity: $\sum_{l=0}^p(-1)^l\binom{2l}{l}\binom{k}{p-l}\binom{2k+2l-2p}{k+l-p}^{-1}=4^p\binom{k-1}{p}\binom{2k}{k}^{-1}$
- Algebraic step including finite sum and binomial coefficient
- nth letter of lexicographically ordered substrings
- Count of possible money splits
- Covering vector space over finite field by subspaces
- A certain partition of 28
- Counting argument proof or inductive proof of $F_1 {n \choose1}+...+F_n {n \choose n} = F_{2n}$ where $F_i$ are Fibonacci
Related Questions in DISCRETE-MATHEMATICS
- What is (mathematically) minimal computer architecture to run any software
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
- Find the truth value of... empty set?
- Solving discrete recursion equations with min in the equation
- Determine the marginal distributions of $(T_1, T_2)$
Related Questions in FORMAL-POWER-SERIES
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- Finding the period of decimal
- Jacobson radical of formal power series over an integral domain
- Proof of existence of an inverse formal power series
- Proof of homomorphism property of the exponential function for formal power series
- formal power series ring over field is m-adic complete
- Let $F[[X]]$ be the ring of formal power series over the field $F$. Show that $(X)$ is a maximal ideal.
- Power Series Arithmetic through Formal Power Series
- Diagonal power series is holonomic
Related Questions in ALGEBRAIC-COMBINATORICS
- Powers of a simple matrix and Catalan numbers
- Unbounded, Repeated Figures in Non-periodic Tilings
- How can I enumerate sets of inequalities that give a nonempty feasible region?
- To show two formal power series equal
- About combinatorics
- Proving an identity for complete homogenous symmetric polynomials
- About the determinant of a symmetric matrix with even diagonal
- Counting solutions to equations involving partitions
- Prescriptive version of counting hyperplane arrangements
- Guess the recursion
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?