I am looking for a way to use $LL^T$ decomposition of a tridiagonal and symmetric positive definite $n$ by $n$ matrix $A$ to solve $$A^TAx=b.$$ In this case, thanks to $A$ being symmetric, the sysytem is equal to $A^2x=b$. I am not sure how to use the factorization to solve the system though. Does anybody know how to do that?
2026-02-22 22:30:07.1771799407
Using Cholesky decomposition to solve a system of equaions $A^TAx=b$
751 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in SYSTEMS-OF-EQUATIONS
- Can we find $n$ Pythagorean triples with a common leg for any $n$?
- System of equations with different exponents
- Is the calculated solution, if it exists, unique?
- System of simultaneous equations involving integral part (floor)
- Solving a system of two polynomial equations
- Find all possible solution in Z5 with linear system
- How might we express a second order PDE as a system of first order PDE's?
- Constructing tangent spheres with centers located on vertices of an irregular tetrahedron
- Solve an equation with binary rotation and xor
- Existence of unique limit cycle for $r'=r(μ-r^2), \space θ' = ρ(r^2)$
Related Questions in MATRIX-DECOMPOSITION
- Real eigenvalues of a non-symmetric matrix $A$ ?.
- Swapping row $n$ with row $m$ by using permutation matrix
- Block diagonalizing a Hermitian matrix
- $A \in M_n$ is reducible if and only if there is a permutation $i_1, ... , i_n$ of $1,... , n$
- Simplify $x^TA(AA^T+I)^{-1}A^Tx$
- Diagonalize real symmetric matrix
- How to solve for $L$ in $X = LL^T$?
- Q of the QR decomposition is an upper Hessenberg matrix
- Question involving orthogonal matrix and congruent matrices $P^{t}AP=I$
- Singular values by QR decomposition
Related Questions in SYMMETRIC-MATRICES
- $A^2$ is a positive definite matrix.
- Showing that the Jacobi method doesn't converge with $A=\begin{bmatrix}2 & \pm2\sqrt2 & 0 \\ \pm2\sqrt2&8&\pm2\sqrt2 \\ 0&\pm2\sqrt2&2 \end{bmatrix}$
- Is $A-B$ never normal?
- Is a complex symmetric square matrix with zero diagonal diagonalizable?
- Symmetry of the tetrahedron as a subgroup of the cube
- Rotating a matrix to become symmetric
- Diagonalize real symmetric matrix
- How to solve for $L$ in $X = LL^T$?
- Showing a block matrix is SPD
- Proving symmetric matrix has positive eigenvalues
Related Questions in TRIDIAGONAL-MATRICES
- Prove that $Q^{T}TQ$ is symmetric and tridiagonal, where $Q,R$ is $QR$ decomposition of symmetric tridiagonal matrix $T$
- Spectrum of tridiagonal block matrix
- The eigenvector of toeplitz matrix
- Generating a random tridiagonal symmetric positive definite matrix
- Inversion of a Tridiagonal Matrices and Recurrence equation
- Using Cholesky decomposition to solve a system of equaions $A^TAx=b$
- What is the rank of $B$?
- Is there a fast way to prove a symmetric tridiagonal matrix is positive definite?
- Is there any specific relationship among the determinant of leading principal submatrices of a tridiagonal matrix?
- Linear Algebra: tri-diagonal matrix problem.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I'm not sure this is the most efficient, but assuming you don't wan't to just recalculate the new Cholesky decomposition for $A^2$, you can simply use three forward / back substitutions instead of the usual two, noting that $L^2$ is also triangular: $$A^T A x = L^T L^2 L^T x = b$$ $$\text{Forward substitute to get $y$:}\quad L^T y = b,\ y = L^2 L^T x$$ $$\text{Backward substitute to get $z$:}\quad L^2 z = y, \ z = L^T x$$ $$\text{Forward substitute to get $x$:}\quad L^T x = z$$
Addendum: As you may already know, the Cholesky decomposition for a tridiagonal symmetric matrix is composed of bidiagonal matrices.