Consider the sequence
\begin{equation}u_n=\sin(\frac{nx}{n+1})(1+\exp{(-n|y|)}) \text{ where } (x,y)\in I=[-1,1]\times[-1,1], n\in\mathbb{N}.\end{equation}
(a) Study the equicontinuity of $(u_n)$ on $I$.
(b) Study convergence of $(u_n)$ in th weak* topology of $L^\infty$
My Attempt
(a) Since $u_n(x,y)\rightarrow$ $u= \begin{cases} 2\sin{x} & y=0 \\ \sin{x} & \text{else} \\ \end{cases}$ for all $(x,y)\in I$ where $u$ is not continous, $(u_n)$ is not Equicontinuous.
(b) We show \begin{equation} \int u_n(x,y)v(x,y)\rightarrow \int u(x,y)v(x,y), \quad\forall v\in L^1. \end{equation}
Please how to I show that? What if the function is modified to $u_n=(1+\sin(nx))(1+\exp(-n|y|)$?
Since $u_n(x,y)\rightarrow u(x,y)$ pointwise and the integrand \begin{equation}|u_n(x,y)||v(x,y)|\leq 2|v(x,y)|\end{equation} (is dominated) for all $v\in L^1$, we have by Dominated Convergence Theorem that
\begin{equation}\int u_n(x,y)v(x,y)\rightarrow \int \sin(x,y)v(x,y)\end{equation} on $I - [-1,1]\times \{0\}$ where $[-1,1]\times \{0\}$ has measure zero. Hence, $u_n$ converges in $L^\infty$ weak* to $\sin(x)$