What are the good reading books to learn cluster algebra? I need a basic introductory books or notes in particular. I do not have any physics background and I want a book which starts with graph theory. Please help.
2026-02-22 21:50:35.1771797035
Bumbble Comm
On
What are the good reading books to learn cluster algebra?
711 Views Asked by user530420 https://math.techqa.club/user/user530420/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
There are some lecture notes like
1) https://math.berkeley.edu/~williams/papers/CA.pdf
2) http://www.maths.dur.ac.uk/users/philipp.b.lampe/LectureNotes/cluster.pdf
3) https://bookstore.ams.org/emszlec-19
In general, you do not need any Graph theory know to a huge extent. I have to be familiar with quivers, edges and all.
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in NONCOMMUTATIVE-ALGEBRA
- In a left noetherian ring, does having a left inverse for an element guarantee the existence of right inverse for that element?
- Are there rational coefficients that hold such properties?
- A characterization for minimal left ideals of semisimple rings
- $A \subseteq B \subseteq C$, with $A$ and $C$ simple rings, but $B$ is not a simple ring
- Simplicity of Noetherian $B$, $A \subseteq B\subseteq C$, where $A$ and $C$ are simple Noetherian domains
- Completion of localization equals the completion
- Representations of an algebra
- A characterization of semisimple module related to anihilators
- Counterexample request: a surjective endomorphism of a finite module which is not injective
- Two definitions of an $A$-algebra
Related Questions in CLUSTER-ALGEBRA
- What are the good reading books to learn cluster algebra?
- What are the generating elements of a cluster algebra?
- How exactly do I compute Poisson-Lie brackets?
- Cluster algebra associated to a d-gon
- Definition of cluster algebras.
- Example of a cluster variety
- Cluster as a transcendence basis of the field of rational functions.
- Ring automorphisms between cluster algebras of finite type $A$
- Cluster algebra of finite type
- How to understand exchange pattern?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
At some point you will want to read Fomin and Zelevinsky's papers: I II III IV. There are also video lectures from Lauren William's course at the Institut Henri Poincaré with several resources linked on that page. There's also a draft of a textbook by Fomin, Williams and Zelevinsky on the arXiv in two parts: 1-3 4-5.