The Law of Iterated Expection Looks like E{E(X|Y)} when the partition you use is generated by the random variable Y rather than Ω. What happens when you use such a partition on the Law of Total probability?
2026-02-22 19:53:30.1771790010
What form does the Law of Total Probability take if the partition you use is generated by the random variable Y?
72 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in PROBABILITY-THEORY
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Another application of the Central Limit Theorem
- proving Kochen-Stone lemma...
- Is there a contradiction in coin toss of expected / actual results?
- Sample each point with flipping coin, what is the average?
- Random variables coincide
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- Determine the marginal distributions of $(T_1, T_2)$
- Convergence in distribution of a discretized random variable and generated sigma-algebras
Related Questions in RANDOM-VARIABLES
- Prove that central limit theorem Is applicable to a new sequence
- Random variables in integrals, how to analyze?
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- Determine the repartition of $Y$
- What is the name of concepts that are used to compare two values?
- Convergence of sequences of RV
- $\lim_{n \rightarrow \infty} P(S_n \leq \frac{3n}{2}+\sqrt3n)$
- PDF of the sum of two random variables integrates to >1
- Another definition for the support of a random variable
- Uniform distribution on the [0,2]
Related Questions in INTEGER-PARTITIONS
- What form does the Law of Total Probability take if the partition you use is generated by the random variable Y?
- Number of positive integral solutions of $a+b+c+d+e=20$ such that $a<b<c<d<e$ and $(a,b,c,d,e)$ is distinct
- On a theorem (1.7) in Macdonald's Symmetric Functions and Hall Polynomials
- Asymptotic behavior of the number of ways a real plane curve of degree $n$ can intersect a real line
- Sum of the hook-lengths of a partition $\lambda$
- On an example in Macdonald's Symmetric Functions and Hall Polynomials on Paritions and their Frobenius Notation
- To show that $\sum_{x \in \lambda}(h(x)^2 - c(x)^2)=|\lambda|^2$, $h(x)$ is hook-length & $c(x)$ content of $x$, a block in the diagram of $\lambda$
- Decompose the permutation module $M^{(2, 2)}$ into irreducible representations.
- What does s(n) = s(n) mean?
- Maximizing $\sum\left(\lfloor \frac{n_i}{2} \rfloor+1\right)$ for a partition $\{n_i\}$ of $N$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Same thing: $$\Pr(A) = \operatorname E(\Pr(A\mid Y)). \tag 1$$
For each value $y$ that the random variable $Y$ can take, you have a conditional probability $\Pr(A\mid Y=y),$ and that is a function of the value $y,$ so call that $h(y).$ Then $h(Y)$ is a random variable an is what we call $\Pr(A\mid Y).$
Notice that $(1)$ is a consequence of the law of total expectation: It is just the case where $X$ is the indicator random variable of the event $A,$ i.e. $$ X = \begin{cases} 1 & \text{if } A \\ 0 & \text{if not } A. \end{cases} $$ Then you have $\operatorname E(X) = \Pr(A)$ and $\operatorname E(X\mid Y) = \Pr(A\mid Y).$