Let $X_1,. . . , X_n$ be a random sample from a population with variance $σ^2$ and mean $μ$. Designate the corresponding sample mean by $\bar{X}$. Show that $\mathbb{E}(X_i\bar{X})=σ^2/n + µ^2, i = 1, . . . , n.$ Help please! Can't do anything.
2026-02-22 21:48:14.1771796894
What is expected value of a sample mean?
1.6k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in EXPECTATION
- Prove or disprove the following inequality
- Show that $\mathbb{E}[Xg(Y)|Y] = g(Y) \mathbb{E}[X|Y]$
- Need to find Conditions to get a (sub-)martingale
- Expected Value of drawing 10 tickets
- Martingale conditional expectation
- Variance of the integral of a stochastic process multiplied by a weighting function
- Sum of two martingales
- Discrete martingale stopping time
- Finding statistical data for repeated surveys in a population
- A universal bound on expectation $E[X^ke^{-X}]$
Related Questions in STATISTICAL-INFERENCE
- co-variance matrix of discrete multivariate random variable
- Question on completeness of sufficient statistic.
- Probability of tossing marbles,covariance
- Estimate the square root of the success probability of a Binomial Distribution.
- A consistent estimator for theta is?
- Using averages to measure the dispersion of data
- Confidence when inferring p in a binomial distribution
- A problem on Maximum likelihood estimator of $\theta$
- Derive unbiased estimator for $\theta$ when $X_i\sim f(x\mid\theta)=\frac{2x}{\theta^2}\mathbb{1}_{(0,\theta)}(x)$
- Show that $\max(X_1,\ldots,X_n)$ is a sufficient statistic.
Related Questions in SAMPLING
- Defintion Ideally sampled image
- What is expected value of a sample mean?
- Why does k-fold cross validation generate an MSE estimator that has higher bias, but lower variance then leave-one-out cross-validation?
- Sampling Question
- Limit of chi square distribution.
- Sampling Distribution of Difference of Normal Random Variables
- Sampling Distribution and Chi Squared Random Variables
- Variance of $S^2$ taken from Normal Distribution
- Sample Variance Definition Disparity
- [data generating process]-[sampling from an infinite population]-[i.i.d.]: some clarifications
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For some $i \in \{ 1, \dots, n\}$, $$X_i\bar{X}=\dfrac{X_1X_i+X_2X_i+\cdots+X_{i-1}X_i+X_i^2+X_{i+1}X_i+\cdots+X_nX_i}{n}$$ Now for some $j \in \{1, \dots, n\}$, where $j \neq i$, we have $$\mathbb{E}[X_jX_i]=\mathbb{E}[X_j]\mathbb{E}[X_i]=\mu^2$$ due to independence (random sampling). Furthermore, $\mathbb{E}[X_i^2] = \sigma^2+\mu^2$. Hence, $$\mathbb{E}[X_1X_i+X_2X_i+\cdots+X_{i-1}X_i+X_i^2+X_{i+1}X_i+\cdots+X_nX_i]=(n-1)\mu^2+\sigma^2+\mu^2$$ which simplifies to $n\mu^2+\sigma^2$.
Now multiply by $\dfrac{1}{n}$.