Let Y~ Poisson($\lambda$). Then,
$$\sum_{k\geq 0}\Pr(Y=k) = \sum_{k\geq 0}\frac{\lambda^k e^{-\lambda}}{k!} = 1. $$
Differentiate both sides w.r.t. $\lambda$,
$$-e^{-\lambda} - \sum_{k\geq 1}\frac{k\lambda^{k-1} e^{-\lambda}}{k!} = 0.$$
Multiply $\lambda$ to both sides,
$$\sum_{k\geq 1}\frac{k\lambda^k e^{-\lambda}}{k!} = -\lambda e^{-\lambda}.$$
Hence Mean of Y = $\sum_{k\geq 0}\frac{k\lambda^k e^{-\lambda}}{k!}$ = $-\lambda e^{-\lambda}$.
Which is obviously not true because Mean of Y must be $\lambda$. Could you kindly point out the error? Thanks!
2025-01-12 23:55:44.1736726144
What is wrong with this derivation of the mean of Poisson distribution?
68 Views Asked by shaktiman https://math.techqa.club/user/shaktiman/detail At
1
You have correctly that $\sum_{k\geq 0}\frac{\lambda^k e^{-\lambda}}{k!} = 1 $
You have not differentiated correctly.
You should get $\sum_{k\geq 0} \left( \frac d{d \lambda} \frac{\lambda^k e^{-\lambda}}{k!} \right)= 0$
$\sum_{k\geq 0} \left( \frac{k\lambda^{k-1} e^{-\lambda}}{k!}-\frac{\lambda^k e^{-\lambda}}{k!} \right)= 0$
$\sum_{k\geq 0} \left( \frac{k\lambda^{k-1} e^{-\lambda}}{k!}\right)= \sum_{k\geq 0} \left( \frac{\lambda^k e^{-\lambda}}{k!} \right)$
Multiplying by $\lambda$ gives:
$\sum_{k\geq 0} \left( \frac{k\lambda^k e^{-\lambda}}{k!}\right)=\lambda \times \sum_{k\geq 0} \left( \frac{\lambda^k e^{-\lambda}}{k!} \right)=\lambda \times 1=\lambda$