In many proofs (but not all) of the Baire Category theorem one requires on the n:th induction step that: $\overline{B(y_n,r_n)} \subset U_n \cap B(y_{n-1},r_{n-1})$ (where $\{ U_n \}_{n \geq}$ is a sequence of dense open sets). I wonder if this is a necessary step? Isn't it be enough to require: $B(y_n,r_n) \subset U_n \cap B(y_{n-1},r_{n-1})$ , and then show that the limit of $\{y_n\}$ belongs to $B(y_n,r_n) $?
2026-02-22 23:10:53.1771801853
A question on the proof of the Baire Category theorem
81 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in METRIC-SPACES
- Show that $d:\mathbb{C}\times\mathbb{C}\rightarrow[0,\infty[$ is a metric on $\mathbb{C}$.
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Lemma 1.8.2 - Convex Bodies: The Brunn-Minkowski Theory
- Closure and Subsets of Normed Vector Spaces
- Is the following set open/closed/compact in the metric space?
- Triangle inequality for metric space where the metric is angles between vectors
- continuous surjective function from $n$-sphere to unit interval
- Show that $f$ with $f(\overline{x})=0$ is continuous for every $\overline{x}\in[0,1]$.
- Help in understanding proof of Heine-Borel Theorem from Simmons
Related Questions in COMPLETE-SPACES
- Intuition on Axiom of Completeness (Lower Bounds)
- What is the hausdorff completion of this uniform structure on the real line?
- Any complete linear subspace is closed?
- Show that space of continuous functions on interval $[a,b]$ with integral metric is not complete - question
- Completeness with distance functions in metric space
- Proving $(X, d)$ is complete if and only if $(X, d')$ is complete
- Let $M\subset l^{\infty}$ be the subspace of $\; l^{\infty}$ consisting of all sequences $(x_{i})$ with at
- Proving a space is not complete by finding an absolutely convergent series
- Separability and completeness of Cartesian product of two metric spaces
- Complete spaces in algebra vs complete spaces in topology
Related Questions in BAIRE-CATEGORY
- Is there an uncountable collection of pairwise disjoint second category subsets of Cantor space?
- What is the Baire characteristic of the real number line?
- Uniqueness in Baire property representation for compact Hausdorff spaces
- On the notion of Cech-complete
- If $f \in C^\infty (\mathbb{R})$ such that $f^{(n)}=0$ for some $n$, then $f$ is a polynomial?
- A question on the proof of the Baire Category theorem
- Proof of Uniform boundedness principle (why are the sets closed)
- Measure of complement of union of nowhere dense set with positive measure
- A Cech-complete subspace is a $G_\delta$ in its closure
- Space of $L^p$ functions not in $L^q$ for all $q\neq p$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The reason (probably, I don't know what text you're using) is because to get the non-empty intersection, Cantor's theorem can be applied: if $C_n$ is a sequence of decreasing closed sets such that $\operatorname{diam}(C_n) \to 0$ then in a complete metric space $\cap_n C_n \neq \emptyset$. The $\overline{B(y_n, r_n)}$ can be used as $C_n$ provided the $r_n$ decrease to $0$, as $\operatorname{diam}(C_n) \le 2r_n$ in this case.