Could you help me to find an asymptotic for this sum? $$ \sum_{k=0}^{n - 1} (-1)^k {n \choose k} {3n - k - 1 \choose 2n - k} = {n \choose 0} {3n - 1 \choose 2n} - {n \choose 1} {3n - 2 \choose 2n - 1} + ... + (-1)^{n-1} {n \choose n-1} {2n \choose n + 1} $$
I have tried to write binomials through factorials and work with it, but it seems like not right way to evaluate an asymptotic.
Thank you for your help:)
$$\begin{align} \sum_{k=0}^{n-1}(-1)^k\binom nk \color{blue}{\binom {3n-k-1}{2n-k}} &=\sum_{k=0}^{n-1}(-1)^k\binom nk\color{blue}{(-1)^{2n-k}\binom {-n}{2n-k}} \qquad&\color{blue}{\text{(upper negation)}}\\ &=\color{green}{\left[\sum_{k=0}^{n}\binom nk\binom {-n}{2n-k}\right]}-\color{orange}{\binom nk\binom {-n}{2n-k}\Biggr|_{k=n}}\\ &=\color{green}{\binom 0{2n}}-\color{orange}{\binom nn\binom {-n}{n}} \qquad&\color{green}{\text{(Vandermonde)}}\\ &=-\color{orange}{(-1)^n\binom{2n-1}n} \qquad&\color{orange}{\text{(upper negation)}}\\ &=(-1)^{n-1}\binom{2n-1}n=(-1)^{n-1}\binom{2n-1}{n-1}\quad\blacksquare \end{align}$$