I did some numeric experiments with integrals involving double logarithms (because they received much interest both on this site and in published papers, sometimes under names of Malmsten—Vardi—Adamchik integrals).
It appears that $${\large\int}_0^1\ln\ln\left(\frac{1+x}{1-x}\right)\cdot\frac{\ln x}{1-x^2}\,dx\stackrel{\color{gray}?}=\frac{\pi^2}{24}\,\ln\left(\frac{A^{36}}{16\,\pi^3}\right),$$ where $A=\exp\left(\frac1{12}-\zeta'(-1)\right)$ is the Glaisher—Kinkelin constant (I have more than $1000$ decimal digits confirming this conjecture). How can we prove it?
Using the substitution suggested by @AccidentalFourierTransform , and the integral $\displaystyle \,\,\, \int \frac{1}{\sinh x} dx=\ln\tanh\left(\frac{x}{2}\right)+C$, we have
$$\begin{align} -2\int_0^1 \ln \ln \left(\frac{1+x}{1-x}\right) \frac{\ln x}{1-x^2}dx \\&= -\int_0^{\infty}\ln x \,\,\ln \tanh\left(\frac{x}{2}\right)dx \\&=\int_0^{\infty}\ln x \int_x^{\infty}\frac1{\sinh t} dt dx \\&=\int_0^{\infty} \int_0^{t}\ln x \frac1{\sinh t} dx dt \\&=\int_0^{\infty} \frac{x\ln x-x}{\sinh x} dx \\&=\int_0^{\infty} (x\ln x -x) \frac{2 e^{-x}}{1-e^{-2x}}\,dx \\&=\int_0^{\infty} (x\ln x-x)2\sum_{n=0}^{\infty} e^{-x(2n+1)}dx \\&=2\sum_{n=0}^{\infty} \left(\frac{d}{ds} \frac{\Gamma(s)}{(2n+1)^s} \Bigg{|}_{s=2}-\frac1{(2n+1)^2}\right) \\&=2\sum_{n=0}^{\infty} \left(\frac{\Gamma'(2)-1}{(2n+1)^2}-\frac{\ln(2n+1)}{(2n+1)^2}\right) \\&=2(\Gamma'(2)-1)\frac{\pi^2}{8}-2\left(\sum_{n=1}^{\infty}\frac{\ln(n)}{n^2}-\sum_{n=1}^{\infty} \frac{\ln(2n)}{(2n)^2} \right) \\&=2(\Gamma'(2)-1)\frac{\pi^2}{8}+2\zeta'(2)+\frac12\left(\ln2 \frac{\pi^2}{6}-\zeta'(2)\right) \\&=-\frac{\pi^2}{12}\ln\left(\frac{A^{36}}{16\pi^3}\right) \end{align}$$