Given a standard Brownian motion $\{W_t\}_{t\geq0}$, find the value of $\operatorname{Cov}\left(W_t,W_s\right)$.
Is there a way to simplify $$\operatorname{Cov}\left(W_t,W_s\right)?$$
Given a standard Brownian motion $\{W_t\}_{t\geq0}$, find the value of $\operatorname{Cov}\left(W_t,W_s\right)$.
Is there a way to simplify $$\operatorname{Cov}\left(W_t,W_s\right)?$$
Copyright © 2021 JogjaFile Inc.
Using the properties and Brownian motion and the linearity of the Covariance, we easily get for $t \geq s$:
\begin{align} \operatorname{Cov}\bigl(W_s, W_t\bigr) &= \operatorname{Cov}\bigl(W_s, W_t - W_s + W_s\bigr) =\operatorname{Cov}\bigl(W_s, W_t-W_s\bigr) + \operatorname{Cov}\bigl(W_s, W_s\bigr) \\ &= 0 + Var(W_s) = s. \end{align}
Similarly if $s \geq t$ you get $$ \operatorname{Cov}\bigl(W_s, W_t\bigr) = t. $$
So in general, we have that $$ \operatorname{Cov}\bigl(W_s, W_t\bigr) = \min\{s,t\}. $$