$$\\$$ Let $M$ be an arbitrary manifold and let $R$ be ring of continuous functions on it. I need to prove that $Der_{\mathbb{R}}(R, R) = 0$, (for all manifolds, and here I use Grothendieck definition of derivation, i.e. we have a field $k$, $R$ is a $k$-algebra, so derivation is $D: R \rightarrow R$ homomorphism with leibnitz) But I think I find a counterexample. $$\\$$ Let $M = \mathbb{R}$, I can prove that for all derivations $D$, $D(P(x)) = 0$, where $P(x)$ - polynomial and next I wanted to choose arbitrary function $f$ (not a polynomial one) and prove that $D(f) = 0$ (I can do it for $|x|$), but than I find 2 continuous functions ($sin(x)$ and $cos(x)$) and there is nothing I can do. $$\\$$ So I decided to make a counterexample. If I take derivation $D$ which equals zero on all functions which is not in subring generated by $sin$ and $cos$ (and on $sin$ and $cos$ work as it should be), will it work? My trouble is to check that all correct. $$\\$$ Is it correct that I should create a subring in $\mathbb{R}$ with 2 generators $sin$ and $cos$ and it will be done? Or my counterexample totally incorrect and the statement above is true? (about classification of derivation)
2026-02-22 22:39:53.1771799993
describe ring of derivation of continuous map on manifold
149 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in FUNCTIONAL-EQUATIONS
- Functional equation $2f\left(\frac{x+y}{2}\right)-f(y)=f''(x)$
- How to solve the integral equation $f(x) = \int_0^x f(x-y)k(x,y)dy+g(x)$ for $f(x)$?
- Easy looking functional equation.
- Constructing a functional equation that has given solution set.
- Solution of $f(ax+b)=kf(x)$ with $k,a,b$ are real numbers
- Deriving $\sin(\pi s)=\pi s\prod_{n=1}^\infty (1-\frac{s^2}{n^2})$ without Hadamard Factorization
- Stationary Condition of Variational Iteration Method
- How to solve the functional equation $f(x + f(x +y ) ) = f(2x) + y$?
- Solution to the functional equation $f(z)=(-1)^zf(1-z)$???
- If $f(a,b)=f(a,c)f(c,b)$ for all $a,b,c$, when can we conclude $f(a,b)=g(a)/g(b)$ for some $g$?
Related Questions in DIFFERENTIAL-OPERATORS
- Why is the differential operator equal to an integer in the case of trignometric equations?
- How to prove that inequality for every $f\in C^\infty_0(\Bbb{R})$.
- describe ring of derivation of continuous map on manifold
- If a self-adjoint operator $A$ commutes with a bounded operator $B$, then $\ker B$ is contained in the domain of $A$
- Usage of the del operator $ \nabla $ as a vector.
- The Laplacian operator of $\;{ {\zeta}_0}^2+{ {\zeta}_1}^2=1\;$
- The algebra generated by derivations
- Is a Sturm-Liouville operator the only 2nd order linear differential operator that is self-adjoint/Hermitian?
- Differential operator acting on a constant
- Closed form/ meaning of sum of geometric series of operator exponentials
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?