I am attempting to solve a Stoke's Theorem question where I first find the curl of a vector field, and integrate it along a surface. In part b of the attached question I find the curl of the entire vector field but the solutions tell me that after taking the dot product with $dS$, only the $z$ component survives. Can someone explain how I can tell what $dS$ is and the direction it is in?
2026-02-22 17:54:05.1771782845
Direction of dS when integrating curl around a surface?
320 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MULTIVARIABLE-CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- $\iint_{S} F.\eta dA$ where $F = [3x^2 , y^2 , 0]$ and $S : r(u,v) = [u,v,2u+3v]$
- Proving the differentiability of the following function of two variables
- optimization with strict inequality of variables
- How to find the unit tangent vector of a curve in R^3
- Prove all tangent plane to the cone $x^2+y^2=z^2$ goes through the origin
- Holding intermediate variables constant in partial derivative chain rule
- Find the directional derivative in the point $p$ in the direction $\vec{pp'}$
- Check if $\phi$ is convex
- Gradient and Hessian of quadratic form
Related Questions in VECTOR-ANALYSIS
- Does curl vector influence the final destination of a particle?
- Gradient and Hessian of quadratic form
- Regular surfaces with boundary and $C^1$ domains
- Estimation of connected components
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Gradient of transpose of a vector.
- Directional derivative: what is the relation between definition by limit and definition as dot product?
- Chain rule with intermediate vector function
- For which $g$ is $f(x)= g(||x||) \frac{x}{||x||}$ divergence free.
- Is complex analysis same difficulty as vector analysis/multivariable calculus?
Related Questions in STOKES-THEOREM
- Stoke's Theorem on cylinder-plane intersection.
- Integration of one-form
- First part Spivak's proof of Stokes' theorem
- Stokes theorem, how to parametrize in the right direction?
- Surface to choose for the Stokes' theorem for intersection of sphere and plane.
- Circulation of a vector field through a cylinder inside a sphere.
- Stokes Theorem Equivalence
- Verify Stokes Theorem vector field $\vec{F} = (y, −x, xyz)$
- Evaluate $\iint \text{curl} (y\,\mathbf{i}+2\,\mathbf{j})\cdot n\; d\sigma$ using Stokes Theorem
- Direction of dS when integrating curl around a surface?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

If the surface lies on the plane $z=1$, then its unit normal vector is $\vec{k}$, pointing in the positive $z$-direction by the right-hand rule and according to the sketch provided.