Suppose that $V$ is a (sufficiently smooth) gradient field ($V$ is gradient of some function $f$) defined on a convex set. I was wondering under what conditions it can be extended to a gradient field in the whole space. It would be great if I could be referred to some papers or book chapters. Thank you.
2026-02-22 17:53:50.1771782830
Extension of a gradient field
51 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ORDINARY-DIFFERENTIAL-EQUATIONS
- The Runge-Kutta method for a system of equations
- Analytical solution of a nonlinear ordinary differential equation
- Stability of system of ordinary nonlinear differential equations
- Maximal interval of existence of the IVP
- Power series solution of $y''+e^xy' - y=0$
- Change of variables in a differential equation
- Dimension of solution space of homogeneous differential equation, proof
- Solve the initial value problem $x^2y'+y(x-y)=0$
- Stability of system of parameters $\kappa, \lambda$ when there is a zero eigenvalue
- Derive an equation with Faraday's law
Related Questions in VECTOR-ANALYSIS
- Does curl vector influence the final destination of a particle?
- Gradient and Hessian of quadratic form
- Regular surfaces with boundary and $C^1$ domains
- Estimation of connected components
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Gradient of transpose of a vector.
- Directional derivative: what is the relation between definition by limit and definition as dot product?
- Chain rule with intermediate vector function
- For which $g$ is $f(x)= g(||x||) \frac{x}{||x||}$ divergence free.
- Is complex analysis same difficulty as vector analysis/multivariable calculus?
Related Questions in VECTOR-FIELDS
- Does curl vector influence the final destination of a particle?
- Using the calculus of one forms prove this identity
- In a directional slope field, how can a straight line be a solution to a differential equation?
- Partial Differential Equation using theory of manifolds
- Equivalent definition of vector field over $S^2$
- Study of a " flow "
- Extension of a gradient field
- how to sketch the field lines of $F(x,y)=(\sin y,-\sin x)$?
- Is a vector field a mathematical field?
- Differential $1$ forms as linear maps
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?