Let $x$, $y$ and $z$ be non-negative numbers such that $x+2y+3z=4.$ Find: $$\max(x^2y+y^2z+z^2x+xyz)(x^2z+y^2x+z^2y+xyz).$$
I took this problem here: https://dxdy.ru/topic18767-30.html a last post.
This problem is a similar to many contests problems.
On one of Canadians olimpiads was $x^2y+y^2z+z^2x\leq4$ for non-negatives $x$, $y$ and $z$ such that $x+y+z=3.$
Also, $x^2y+y^2z+z^2x+xyz\leq4$ with the same conditions.
My attempts:
For $(x,y,z)=(2,1,0)$ we get a value $8$, which looks as a maximal value.
I solved this problem for $x=\min\{x,y,z\}$ and for $y=\min\{x,y,z\}$.
But for $z=\min\{x,y,z\}$ we need to prove that $$(x+2y+3z)^6\geq512(x^2y+y^2z+z^2x+xyz)(x^2z+y^2x+z^2y+xyz),$$ which after substitution $x=z+u$, $y=z+v$ gives something very hard: $$38464z^6+64(473u+1202v)z^5+16(447u^2+3068uv+4092v^2)z^4+$$ $$+32(7u^3+234u^2v+1044uv^2+952v^3)z^3+$$ $$+4(7u^4-200u^3v+808u^2v^2+3040uv^3+2032v^4)z^2+$$ $$+4(9u^5-38y^4v-152u^3v^2+208u^2v^3+592uv^4+288v^5)z+$$ $$+(u-2v)^2(u^4+16u^3v+120u^2v^2+64uv^3+16v^4)\geq0.$$ Thank you!
Solution by Tran Quoc Anh.
We need to prove $$8\left(a^{2} b+b^{2} c+c^{2} a+a b c\right)\left(a b^{2}+b c^{2}+c a^{2}+a b c\right) \leqslant \left(\frac{a+2 b+3 c}{2}\right)^{6} .$$ By the AM-GM inequality we have $$ \text{LHS} \leqslant \left[a^{2} b+b^{2} c+c^{2} a+a b c+2\left(a b^{2}+b c^{2}+c a^{2}+a b c\right)\right]^{2}.$$ and $$(a+2 b)(b+2 c)(c+2 a)=2\left[\left(a^{2} b+b^{2} c+c^{2} a\right)+2\left(a b^{2}+b c^{2}+c a^{2}\right)+3 a b c\right]+3 a b c$$ $$ \geqslant 2\left[\left(a^{2} b+b^{2} c+c^{2} a\right)+2\left(a b^{2}+b c^{2}+c a^{2}\right)+3 a b c\right],$$ and $$\begin{aligned} (a+2 b)(b+2 c)(c+2 a) &=\frac{1}{4} \cdot(a+2 b) \cdot 4(b+2 c) \cdot(c+2 a) \\ & \leq \frac{1}{4}\left[\frac{(a+2 b)+4(b+2 c)+(c+2 a)}{3}\right]^{3} \\ &=\frac{1}{4}(a+2 b+3 c)^{3}.\end{aligned}$$ Therefore $$\left(a^{2} b+b^{2} c+c^{2} a\right)+2\left(a b^{2}+b c^{2}+c a^{2}\right)+3 a b c \leq \frac{1}{8}(a+2 b+3 c)^{3}.$$ The proof is completed.