Find Range of $a$ if $$ f(x)= \lfloor \frac{1}{3}+2a \sin ^3 x \rfloor $$ is an Even function
My try:
we have $$f(-x)=f(x)$$ $\implies$
$$ \lfloor \frac{1}{3}+2a \sin ^3 x \rfloor=\lfloor \frac{1}{3}-2a \sin ^3 x \rfloor \tag{1}$$
Obviously $a=0$ is the possibility
Now how can we determine other values of $a$ which makes $(1)$ True?
Obviously it is symmetric in $a$ and trivial for $a=0$, so we can just examine $a>0$:
Suppose $2a\leq \tfrac13$, then $$\bigg\lfloor\frac13+\underbrace{2a\sin^3x}_{\in [-\tfrac13,\tfrac13]}\bigg\rfloor = 0 = \bigg\lfloor\frac13-\underbrace{2a\sin^3x}_{\in [-\tfrac13,\tfrac13]}\bigg\rfloor$$
Suppose $2a>\tfrac13$, then at $x = \tfrac\pi2$
$$\bigg\lfloor\frac13+2a\sin^3 \tfrac\pi2\bigg\rfloor = \bigg\lfloor\frac13+2a\bigg\rfloor \geq 0,$$ but $$\bigg\lfloor\frac13-2a\sin^3 \tfrac\pi2\bigg\rfloor = \bigg\lfloor\frac13 -2a\bigg\rfloor < 0.$$ Hence $a \in [-\tfrac16,\tfrac16]$.