We consider the function $$f(x,y,z)=(7(x^2+y^2+z^2)+6(xy+yz+zx))(x^2y^2+y^2z^2+z^2x^2)$$ Find $$m=\min\{f(x,y,z):xyz=1\}$$ Using the AM-GM inequality it is clear that $$m_+=\min\{f(x,y,z):xyz=1,x,y,z>0\}=13\times 9=117.$$ But $f(-1,-1,1)=45$ so clearly $m<m_+$. Numerically, it seems that $m\approx 42.0$. What is the exact value of $m$?
2026-02-22 21:16:46.1771795006
Find the minimum of a three variate function
78 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in INEQUALITY
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- Prove or disprove the following inequality
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- Solution to a hard inequality
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Bound for difference between arithmetic and geometric mean
- multiplying the integrands in an inequality of integrals with same limits
- How to prove that $\pi^{e^{\pi^e}}<e^{\pi^{e^{\pi}}}$
- Proving a small inequality
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in MAXIMA-MINIMA
- optimization with strict inequality of variables
- Minimum value of a complex expression involving cube root of a unity
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- Solving discrete recursion equations with min in the equation
- Trouble finding local extrema of a two variable function
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- Find the extreme points of the function $g(x):=(x^4-2x^2+2)^{1/2}, x∈[-0.5,2]$
- Maximizing triangle area problem
- Find the maximum volume of a cylinder
Related Questions in UVW
- Inequality with $ab+bc+ca=3$
- Prove $\sum\limits_{cyc}\sqrt[3]{\frac{a^2+bc}{b+c}}\ge\sqrt[3]{9(a+b+c)}$
- Triangle inequality with the exradii $r_{a}$, $r_{b}$, $r_{c}$, the medians $m_{a}$, $m_{b}$, $m_{c}$
- Find the minimum of a three variate function
- Prove $Σ_{cyc}\frac{1}{\left(a+1\right)^2}+\frac{1}{a+b+c+1}\ge 1$
- Prove $\left ( a+ b \right )^{2}\left ( b+ c \right )^{2}\left ( c+ a \right )^{2}\geq 64abc$
- Prove this inequality $Σ_{cyc}\sqrt{\frac{a}{b+3c}}\ge \frac{3}{2}$ with $a;b;c>0$
- An inequality with condition
- If $x+y+z=2$ prove that $\sum_{cyc}\frac{1}{\sqrt{x^2+y^2}}\ge2+\frac{1}{\sqrt{2}}$
- show this $\prod(a^3+b^3+ab)^2\ge (\sum a^2b)^3( \sum ab^2)^3$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Since $\sum\limits_{cyc}(7x^2+6xy)>0$ and $\sum\limits_{cyc}x^2y^2>0$, we see that the minimal value is non-negative.
Let $m$ be a minimal value.
Thus, $$\sum_{cyc}(7x^2+6xy)\sum_{cyc}x^2y^2\geq mx^2y^2z^2.$$ Let $x+y+z=3u$, $xy+xz+yz=3v^2$, where $v^2$ can be negative and $xyz=w^3$.
Hence, $$(7(9u^2-6v^2)+18v^2)(9v^4-6uw^3)-mw^6\geq0$$ or $g(w^3)\geq0,$ where $$g(w^3)=(7(9u^2-6v^2)+18v^2)(9v^4-6uw^3)-mw^6.$$ We see that $g$ is a concave function.
But the concave function gets a minimal value for an extreme value of $w^3$, which happens for an equality case of two variables.
Since $g(w^3)$ is a homogeneous, it's enough to assume $y=z=1$, which gives $$m=\min_{x\in\mathbb R}\frac{(7x^2+12x+20)(2x^2+1)}{x^2}.$$ We obtain $$\left(\frac{(7x^2+12x+20)(2x^2+1)}{x^2}\right)'=\frac{4(x-1)(7x^3+13x^2+13x+10)}{x^3},$$ which gives that the minimum occurs when $x$ equal to the real root of the equation $$7x^3+13x^2+13x+10=0,$$ which we can get by the Cardano's formula and we can get an exact minimal value.
I got $$m=\tfrac{2062+\sqrt[3]{4420439038+12661425\sqrt{120585}}+\sqrt[3]{4420439038-12661425\sqrt{120585}}}{105}=42.04956...$$