$a, b, c ∈ \mathbb{R}+.$
WLOG assume $a \leq b \leq c.$ I tried substitution: $x=\frac{1} {1+a^2}, y=\frac{1} {1+b^2}, z=\frac{1} {1+c^2},$ so $x \geq y \geq z$ and $(1-x)+(1-y)+(1-z)=2 \to x+y+z=1.$
We want to prove $ax+by+cz \leq \sqrt{2}.$ This somewhat looks like Cauchy-Schwarz so I tried that: $(a^2+b^2+c^2)(x^2+y^2+z^2) \geq (ax+by+cz)^2.$ The problem becomes $(a^2+b^2+c^2)(x^2+y^2+z^2) \geq 2,$ since $a,b,c,x,y,z>0.$
Expressing $a,b,c$ in terms of $x,y,z$: $(\frac {1}{x} + \frac {1}{y} + \frac {1}{z} - 3)(x^2+y^2+z^2)$
$= x+y+z+\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-3(x^2+y^2+z^2) \geq 2.$
$\to \frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-3(x^2+y^2+z^2) \geq 1.$ Stuck here. Thinking about using AM-GM but not sure how. Help would be greatly appreciated.
Cauchy-Schwartz ... \begin{eqnarray*} \left( \frac{a}{\sqrt{1+a^2}} \frac{1}{\sqrt{1+a^2}} + \frac{b}{\sqrt{1+b^2}} \frac{1}{\sqrt{1+b^2}} + \frac{c}{\sqrt{1+c^2}} \frac{1}{\sqrt{1+c^2}} \right)^2 \\\leq \left( \frac{a^2}{1+a^2} + \frac{b^2}{1+b^2} +\frac{c^2}{1+c^2} \right) \left( \frac{1}{1+a^2} + \frac{1}{1+b^2} +\frac{1}{1+c^2} \right)= 2. \end{eqnarray*}